Quadratic forms for the 1-D semilinear Schrodinger equation

被引:117
|
作者
Kenig, CE
Ponce, G
Vega, L
机构
[1] UNIV CALIF SANTA BARBARA, DEPT MATH, SANTA BARBARA, CA 93106 USA
[2] UNIV BASQUE COUNTRY, DEPT MATEMAT, E-48080 BILBAO, SPAIN
关键词
Schrodinger equation; bilinear estimates; well-posedness;
D O I
10.1090/S0002-9947-96-01645-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with 1-D quadratic semilinear Schrodinger equations. We study local well posedness in classical Sobolev space H-s of the associated initial value problem and periodic boundary value problem. Our main interest is to obtain the lowest value of s which guarantees the desired local well posedness result. We prove that at least for the quadratic cases these values are negative and depend on the structure of the nonlinearity considered.
引用
收藏
页码:3323 / 3353
页数:31
相关论文
共 50 条
  • [41] A remark on the stabilization of the 1-d wave equation
    Nicaise, Serge
    Valein, Julie
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (1-2) : 47 - 51
  • [42] On the Metastability of the 1-d Allen–Cahn Equation
    Maria G. Westdickenberg
    Journal of Dynamics and Differential Equations, 2021, 33 : 1853 - 1879
  • [43] Insensitizing controls for the 1-D wave equation
    Dager, Rene
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2006, 45 (05) : 1758 - 1768
  • [44] On the controllability of the 1-D isentropic Euler equation
    Glass, Olivier
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2007, 9 (03) : 427 - 486
  • [45] Spectra of a 1-D Wave Equation on Networks
    Liu Dongyi
    Xu Genqi
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 1037 - 1042
  • [46] Inverse Scattering for the 1-D Helmholtz Equation
    Beltita, Ingrid
    Bunoiu, Renata
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2016, 10 (04) : 639 - 666
  • [47] ON THE GLOBAL CONTROLLABILITY OF THE 1-D BOUSSINESQ EQUATION
    Jammazi, Chaker
    Loucif, Souhila
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (06): : 1499 - 1523
  • [48] Spectral theory of 1-D Schrodinger operators with unbounded potentials
    Gordon, A.
    Holt, J.
    Molchanov, S.
    Probability and Mathematical Physics: A Volume in Honor of Stanislav Molchanov, 2007, 42 : 181 - 198
  • [49] Dispersion for 1-D Schrodinger and wave equations with BV coefficients
    Beli, Constantin N.
    Ignat, Liviu I.
    Zuazua, Enrique
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (06): : 1473 - 1495
  • [50] Inverse Scattering for the 1-D Helmholtz Equation
    Ingrid Beltiţă
    Renata Bunoiu
    Complex Analysis and Operator Theory, 2016, 10 : 639 - 666