1/2-Order Fractional Fokker–Planck Equation on Comblike Model

被引:0
|
作者
M. A. Zahran
机构
[1] Mansoura University,Physics Department, Faculty of Science
来源
关键词
Anomalous diffusion; fractional Fokker–Planck equation; operator method;
D O I
暂无
中图分类号
学科分类号
摘要
From the generalized scheme of random walks on the comblike structure, it is shown how a 1/2-order fractional Fokker–Planck equation can be derived. The operator method for the moments associated with the distribution function p(x,t) is used to solve the resulting equation. Also the anomalous diffusion along the backbone of the structure has been considered.
引用
收藏
页码:1005 / 1016
页数:11
相关论文
共 50 条
  • [41] OPTIMIZATION OF A MODEL FOKKER-PLANCK EQUATION
    Herty, Michael
    Joerres, Christian
    Sandjo, Albert N.
    KINETIC AND RELATED MODELS, 2012, 5 (03) : 485 - 503
  • [42] Transport in the spatially tempered, fractional Fokker-Planck equation
    Kullberg, A.
    del-Castillo-Negrete, D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (25)
  • [43] A DISCRETE MODEL OF THE FOKKER-PLANCK EQUATION
    VOLKOV, YA
    POLYUDOV, AN
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1987, 27 (3-4): : 71 - 80
  • [44] Numerical solution of the space fractional Fokker-Planck equation
    Liu, F
    Anh, V
    Turner, I
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 166 (01) : 209 - 219
  • [45] Finite difference approximations for the fractional Fokker-Planck equation
    Chen, S.
    Liu, F.
    Zhuang, P.
    Anh, V.
    APPLIED MATHEMATICAL MODELLING, 2009, 33 (01) : 256 - 273
  • [46] Numerical algorithm for the time fractional Fokker-Planck equation
    Deng, Weihua
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (02) : 1510 - 1522
  • [47] SOLUTION OF FRACTIONAL FOKKER PLANCK EQUATION USING FRACTIONAL POWER SERIES METHOD
    Habenom, Haile
    Suthar, D. L.
    Aychluh, Mulualem
    JOURNAL OF SCIENCE AND ARTS, 2019, (03): : 593 - 600
  • [48] New results on Fokker-Planck equations of fractional order
    Jumarie, G
    CHAOS SOLITONS & FRACTALS, 2001, 12 (10) : 1873 - 1886
  • [49] The analytical analysis of fractional order Fokker-Planck equations
    Khan, Hassan
    Farooq, Umar
    Tchier, Fairouz
    Khan, Qasim
    Singh, Gurpreet
    Kumam, Poom
    Sitthithakerngkiet, Kanokwan
    AIMS MATHEMATICS, 2022, 7 (07): : 11919 - 11941
  • [50] A second-order accurate numerical scheme for a time-fractional Fokker-Planck equation
    Mustapha, Kassem
    Knio, Omar M.
    Le Maitre, Olivier P.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (04) : 2115 - 2136