OPTIMIZATION OF A MODEL FOKKER-PLANCK EQUATION

被引:5
|
作者
Herty, Michael [1 ]
Joerres, Christian [1 ]
Sandjo, Albert N. [1 ]
机构
[1] Rhein Westfal TH Aachen, D-52056 Aachen, Germany
关键词
Fokker-Planck Equation; optimal control; P-N-approximation; RADIATION-THERAPY; DOSE-CALCULATION; MONTE-CARLO; TRANSPORT;
D O I
10.3934/krm.2012.5.485
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss optimal control problems for the Fokker-Planck equation arising in radiotherapy treatment planning. We prove existence and uniqueness of an optimal boundary control for a general tracking-type cost functional in three spatial dimensions. Under additional regularity assumptions we prove existence of a continuous necessary first order optimality system. In the one-dimensional case we analyse a numerical discretization of the Fokker-Planck equation. We prove that the resulting discrete optimality system is a suitable discretization of the continuous first-order system.
引用
收藏
页码:485 / 503
页数:19
相关论文
共 50 条
  • [1] A DISCRETE MODEL OF THE FOKKER-PLANCK EQUATION
    VOLKOV, YA
    POLYUDOV, AN
    [J]. USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1987, 27 (3-4): : 71 - 80
  • [2] FOKKER-PLANCK EQUATION
    DESLOGE, EA
    [J]. AMERICAN JOURNAL OF PHYSICS, 1963, 31 (04) : 237 - &
  • [3] Angular moment model for the Fokker-Planck equation
    B. Dubroca
    J.-L. Feugeas
    M. Frank
    [J]. The European Physical Journal D, 2010, 60 : 301 - 307
  • [4] Angular moment model for the Fokker-Planck equation
    Dubroca, B.
    Feugeas, J. -L.
    Frank, M.
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2010, 60 (02): : 301 - 307
  • [5] A lattice Boltzmann model for the Fokker-Planck equation
    Wu, Fangfang
    Shi, Weiping
    Liu, Fang
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (07) : 2776 - 2790
  • [6] Fokker-Planck equation and subdiffusive fractional Fokker-Planck equation of bistable systems with sinks
    Chow, CW
    Liu, KL
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 : 87 - 106
  • [7] On symmetries of the Fokker-Planck equation
    Kozlov, Roman
    [J]. JOURNAL OF ENGINEERING MATHEMATICS, 2013, 82 (01) : 39 - 57
  • [8] PROPERTIES OF FOKKER-PLANCK EQUATION
    LEWIS, MB
    HOGAN, JT
    [J]. PHYSICS OF FLUIDS, 1968, 11 (04) : 761 - &
  • [9] Fractional Fokker-Planck equation
    El-Wakil, SA
    Zahran, MA
    [J]. CHAOS SOLITONS & FRACTALS, 2000, 11 (05) : 791 - 798
  • [10] The differential equation of Fokker-Planck
    Bernstein, S
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1933, 196 : 1062 - 1064