Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries

被引:0
|
作者
M. Sathiya
J.-B. Leriche
E. Salager
D. Gourier
J.-M. Tarascon
H. Vezin
机构
[1] Collège de France,
[2] Sorbonne Universités,undefined
[3] UPMC Univ Paris 06,undefined
[4] LRCS,undefined
[5] CNRS UMR 7314,undefined
[6] Université de Picardie Jules Verne,undefined
[7] CNRS,undefined
[8] CEMHTI (UPR3079),undefined
[9] Université d’Orléans,undefined
[10] Réseau sur le Stockage Electrochimique de l’Energie (RS2E),undefined
[11] FR CNRS,undefined
[12] PSL Research University Chimie Paristech,undefined
[13] University Lille Nord de France,undefined
[14] CNRS,undefined
[15] UMR 8516—LASIR,undefined
[16] University Lille 1,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Batteries for electrical storage are central to any future alternative energy paradigm. The ability to probe the redox mechanisms occurring at electrodes during their operation is essential to improve battery performances. Here we present the first report on Electron Paramagnetic Resonance operando spectroscopy and in situ imaging of a Li-ion battery using Li2Ru0.75Sn0.25O3, a high-capacity (>270 mAh g−1) Li-rich layered oxide, as positive electrode. By monitoring operando the electron paramagnetic resonance signals of Ru5+ and paramagnetic oxygen species, we unambiguously prove the formation of reversible (O2)n− species that contribute to their high capacity. In addition, we visualize by imaging with micrometric resolution the plating/stripping of Li at the negative electrode and highlight the zones of nucleation and growth of Ru5+/oxygen species at the positive electrode. This efficient way to locate ‘electron’-related phenomena opens a new area in the field of battery characterization that should enable future breakthroughs in battery research.
引用
收藏
相关论文
共 50 条
  • [41] Online state of health estimation of Li-ion polymer batteries using real time impedance measurements
    Mc Carthy, Kieran
    Gullapalli, Hemtej
    Kennedy, Tadhg
    [J]. APPLIED ENERGY, 2022, 307
  • [42] Online state of health estimation of Li-ion polymer batteries using real time impedance measurements
    Mc Carthy, Kieran
    Gullapalli, Hemtej
    Kennedy, Tadhg
    [J]. Applied Energy, 2022, 307
  • [43] REAL-TIME MONITORING OF ELECTRON PROCESSORS
    NABLO, SV
    KNEELAND, DR
    MCLAUGHLIN, WL
    [J]. RADIATION PHYSICS AND CHEMISTRY, 1995, 46 (4-6): : 1377 - 1383
  • [44] Scientists Bulletproof Li-Ion Batteries
    不详
    [J]. CHEMICAL ENGINEERING PROGRESS, 2015, 111 (02) : 12 - 13
  • [45] LI-ION BATTERIES ARE GETTING A MAKEOVER
    不详
    [J]. CHEMICAL ENGINEERING PROGRESS, 2011, 107 (10) : 4 - 5
  • [46] Sulfides for Li-ion batteries and beyond
    Wang, Chunsheng
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [47] Nanomaterials Meet Li-ion Batteries
    Kwon, Nam Hee
    Brog, Jean-Pierre
    Maharajan, Sivarajakumar
    Crochet, Aurelien
    Fromm, Katharina M.
    [J]. CHIMIA, 2015, 69 (12) : 734 - 736
  • [48] Capacity Estimation for Li-ion Batteries
    Tang, Xidong
    Mao, Xiaofeng
    Lin, Jian
    Koch, Brian
    [J]. 2011 AMERICAN CONTROL CONFERENCE, 2011, : 947 - 952
  • [49] Li-ion batteries: Phase transition
    侯配玉
    褚赓
    高健
    张彦涛
    张联齐
    [J]. Chinese Physics B, 2016, (01) : 20 - 30
  • [50] Li-ion Batteries and the Electrification of the Fleet
    Camp, Daniel V.
    Vey, Nathan L.
    Kylander, Paul W.
    Auld, Sean G.
    Willis, Jerald J.
    Lussier, Jonathan F.
    Eldred, Ross A.
    Van Bossuyt, Douglas L.
    [J]. NAVAL ENGINEERS JOURNAL, 2023, 135 (01) : 169 - 184