Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries

被引:0
|
作者
M. Sathiya
J.-B. Leriche
E. Salager
D. Gourier
J.-M. Tarascon
H. Vezin
机构
[1] Collège de France,
[2] Sorbonne Universités,undefined
[3] UPMC Univ Paris 06,undefined
[4] LRCS,undefined
[5] CNRS UMR 7314,undefined
[6] Université de Picardie Jules Verne,undefined
[7] CNRS,undefined
[8] CEMHTI (UPR3079),undefined
[9] Université d’Orléans,undefined
[10] Réseau sur le Stockage Electrochimique de l’Energie (RS2E),undefined
[11] FR CNRS,undefined
[12] PSL Research University Chimie Paristech,undefined
[13] University Lille Nord de France,undefined
[14] CNRS,undefined
[15] UMR 8516—LASIR,undefined
[16] University Lille 1,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Batteries for electrical storage are central to any future alternative energy paradigm. The ability to probe the redox mechanisms occurring at electrodes during their operation is essential to improve battery performances. Here we present the first report on Electron Paramagnetic Resonance operando spectroscopy and in situ imaging of a Li-ion battery using Li2Ru0.75Sn0.25O3, a high-capacity (>270 mAh g−1) Li-rich layered oxide, as positive electrode. By monitoring operando the electron paramagnetic resonance signals of Ru5+ and paramagnetic oxygen species, we unambiguously prove the formation of reversible (O2)n− species that contribute to their high capacity. In addition, we visualize by imaging with micrometric resolution the plating/stripping of Li at the negative electrode and highlight the zones of nucleation and growth of Ru5+/oxygen species at the positive electrode. This efficient way to locate ‘electron’-related phenomena opens a new area in the field of battery characterization that should enable future breakthroughs in battery research.
引用
收藏
相关论文
共 50 条
  • [21] Nuclear Magnetic Resonance Imaging of Li-ion Battery
    Ohno, D.
    Iwai, Y.
    Kawamura, J.
    ATOM INDONESIA, 2010, 36 (03) : 129 - 132
  • [22] Charging/Discharging Monitoring and Simulation Platform for Li-Ion Batteries
    Luan, Shang-Wen
    Teng, Jen-Hao
    Lee, Dong-Jing
    Huang, Yong-Qing
    Sung, Chen-Lin
    2011 IEEE REGION 10 CONFERENCE TENCON 2011, 2011, : 868 - 872
  • [23] Health Monitoring of Li-ion Batteries: A Particle Filtering Approach
    Samadi, Mohammad Foad
    Saif, Mehrdad
    2015 IEEE 24TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2015, : 831 - 836
  • [24] The Age of Li-Ion Batteries
    Stephan, Alexandra K.
    JOULE, 2019, 3 (11) : 2583 - 2584
  • [25] Safer Li-ion batteries
    O'Driscoll, Cath
    CHEMISTRY & INDUSTRY, 2018, 82 (07) : 8 - 8
  • [26] Arcing in Li-Ion Batteries
    Ledinski, Theo
    Golubkov, Andrey W.
    Schweighofer, Oskar
    Erker, Simon
    BATTERIES-BASEL, 2023, 9 (11):
  • [27] Ultimate Li-ion batteries
    Cao, Deqing
    Chen, Yuhui
    SCIENCE BULLETIN, 2021, 66 (07) : 645 - 647
  • [28] Thermomanagement of Li-ion batteries
    Wiebelt, Achim
    Isermeyer, Tobias
    Siebrecht, Thomas
    Heckenberger, Thomas
    ATZ worldwide, 2009, 111 (7-8) : 12 - 15
  • [29] Cross-Platform Real-Time Simulation Models for Li-ion Batteries in Opal-RT and Typhoon-HIL
    Jia, Xinlan
    Adhikari, Prottay M.
    Vanfretti, Luigi
    2021 IEEE TEXAS POWER AND ENERGY CONFERENCE (TPEC), 2021, : 325 - 330
  • [30] Dynamical modeling procedure of a Li-ion battery pack suitable for real-time applications
    Castano, S.
    Gauchia, L.
    Voncila, E.
    Sanz, J.
    ENERGY CONVERSION AND MANAGEMENT, 2015, 92 : 396 - 405