Lorentz signature and twisted spectral triples

被引:0
|
作者
A. Devastato
S. Farnsworth
F. Lizzi
P. Martinetti
机构
[1] INFN sezione di Napoli,Dipartimento di Matematica
[2] Max Planck Institute for Gravitational Physics (Albert Einstein Institute),undefined
[3] Dipartimento di Fisica “E. Pancini”,undefined
[4] Università di Napoli Federico II,undefined
[5] Institut de Cíencies del Cosmos (ICCUB),undefined
[6] Universitat de Barcelona,undefined
[7] Università di Genova,undefined
关键词
Non-Commutative Geometry; Differential and Algebraic Geometry; SpaceTime Symmetries;
D O I
暂无
中图分类号
学科分类号
摘要
We show how twisting the spectral triple of the Standard Model of elementary particles naturally yields the Krein space associated with the Lorentzian signature of spacetime. We discuss the associated spectral action, both for fermions and bosons. What emerges is a tight link between twists and Wick rotation.
引用
收藏
相关论文
共 50 条
  • [1] Lorentz signature and twisted spectral triples
    Devastato, A.
    Farnsworth, S.
    Lizzi, F.
    Martinetti, P.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2018, (03):
  • [2] Untwisting twisted spectral triples
    Goffeng, Magnus
    Mesland, Bram
    Rennie, Adam
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2019, 30 (14)
  • [3] Gauge transformations for twisted spectral triples
    Landi, Giovanni
    Martinetti, Pierre
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (12) : 2589 - 2626
  • [4] Gauge transformations for twisted spectral triples
    Giovanni Landi
    Pierre Martinetti
    [J]. Letters in Mathematical Physics, 2018, 108 : 2589 - 2626
  • [5] A note on twisted crossed products and spectral triples
    Antonini, P.
    Guido, D.
    Isola, T.
    Rubin, A.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2022, 180
  • [6] Regularity of twisted spectral triples and pseudodifferential calculi
    Matassa, Marco
    Yuncken, Robert
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2019, 13 (03) : 985 - 1009
  • [7] Twisted Spectral Triples and Connes' Character Formula
    Fathizadeh, Farzad
    Khalkhali, Masoud
    [J]. PERSPECTIVES ON NONCOMMUTATIVE GEOMETRY, 2011, 61 : 79 - +
  • [8] Twisted spectral triples and quantum statistical mechanical systems
    Greenfield M.
    Marcolli M.
    Teh K.
    [J]. P-Adic Numbers, Ultrametric Analysis, and Applications, 2014, 6 (2) : 81 - 104
  • [9] Real Part of Twisted-by-Grading Spectral Triples
    Filaci, Manuele
    Martinetti, Pierre
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [10] Gauge transformations of spectral triples with twisted real structures
    Magee, Adam M.
    Dabrowski, Ludwik
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (08)