Untwisting twisted spectral triples

被引:3
|
作者
Goffeng, Magnus [1 ,2 ]
Mesland, Bram [3 ]
Rennie, Adam [1 ,2 ,4 ]
机构
[1] Chalmers Univ Technol, Dept Math Sci, Gothenburg, Sweden
[2] Univ Gothenburg, Gothenburg, Sweden
[3] Leiden Univ, Math Inst, Leiden, Netherlands
[4] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW, Australia
基金
瑞典研究理事会;
关键词
Twisted spectral triples; local index theory; KK-theory; noncommutative geometry; LOCAL INDEX FORMULA; CUNTZ-PIMSNER ALGEBRAS; NONCOMMUTATIVE GEOMETRY; FREDHOLM MODULES; CHERN CHARACTER; KMS STATES; HOMOLOGY;
D O I
10.1142/S0129167X19500769
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We examine the index data associated to twisted spectral triples and higher order spectral triples. In particular, we show that a Lipschitz regular twisted spectral triple can always be "logarithmically dampened" through functional calculus, to obtain an ordinary (i.e. untwisted) spectral triple. The same procedure turns higher order spectral triples into spectral triples. We provide examples of highly regular twisted spectral triples with nontrivial index data for which Moscovici's ansatz for a twisted local index formula is identically zero.
引用
收藏
页数:48
相关论文
共 50 条
  • [1] Gauge transformations for twisted spectral triples
    Landi, Giovanni
    Martinetti, Pierre
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (12) : 2589 - 2626
  • [2] Lorentz signature and twisted spectral triples
    A. Devastato
    S. Farnsworth
    F. Lizzi
    P. Martinetti
    [J]. Journal of High Energy Physics, 2018
  • [3] Lorentz signature and twisted spectral triples
    Devastato, A.
    Farnsworth, S.
    Lizzi, F.
    Martinetti, P.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2018, (03):
  • [4] Gauge transformations for twisted spectral triples
    Giovanni Landi
    Pierre Martinetti
    [J]. Letters in Mathematical Physics, 2018, 108 : 2589 - 2626
  • [5] A note on twisted crossed products and spectral triples
    Antonini, P.
    Guido, D.
    Isola, T.
    Rubin, A.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2022, 180
  • [6] Regularity of twisted spectral triples and pseudodifferential calculi
    Matassa, Marco
    Yuncken, Robert
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2019, 13 (03) : 985 - 1009
  • [7] Twisted Spectral Triples and Connes' Character Formula
    Fathizadeh, Farzad
    Khalkhali, Masoud
    [J]. PERSPECTIVES ON NONCOMMUTATIVE GEOMETRY, 2011, 61 : 79 - +
  • [8] Untwisting the Twisted Catheter
    Teo, Jassie
    Jalaluddin, Khin Maung Zan Mohd Saad
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2022, 79 (15) : S278 - S279
  • [9] Twisted spectral triples and quantum statistical mechanical systems
    Greenfield M.
    Marcolli M.
    Teh K.
    [J]. P-Adic Numbers, Ultrametric Analysis, and Applications, 2014, 6 (2) : 81 - 104
  • [10] Real Part of Twisted-by-Grading Spectral Triples
    Filaci, Manuele
    Martinetti, Pierre
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16