Untwisting twisted spectral triples

被引:3
|
作者
Goffeng, Magnus [1 ,2 ]
Mesland, Bram [3 ]
Rennie, Adam [1 ,2 ,4 ]
机构
[1] Chalmers Univ Technol, Dept Math Sci, Gothenburg, Sweden
[2] Univ Gothenburg, Gothenburg, Sweden
[3] Leiden Univ, Math Inst, Leiden, Netherlands
[4] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW, Australia
基金
瑞典研究理事会;
关键词
Twisted spectral triples; local index theory; KK-theory; noncommutative geometry; LOCAL INDEX FORMULA; CUNTZ-PIMSNER ALGEBRAS; NONCOMMUTATIVE GEOMETRY; FREDHOLM MODULES; CHERN CHARACTER; KMS STATES; HOMOLOGY;
D O I
10.1142/S0129167X19500769
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We examine the index data associated to twisted spectral triples and higher order spectral triples. In particular, we show that a Lipschitz regular twisted spectral triple can always be "logarithmically dampened" through functional calculus, to obtain an ordinary (i.e. untwisted) spectral triple. The same procedure turns higher order spectral triples into spectral triples. We provide examples of highly regular twisted spectral triples with nontrivial index data for which Moscovici's ansatz for a twisted local index formula is identically zero.
引用
收藏
页数:48
相关论文
共 50 条
  • [31] Spectral Triples in Particle Physics
    Bochniak, Arkadiusz
    [J]. XXI INTERNATIONAL SCIENTIFIC CONFERENCE OF YOUNG SCIENTISTS AND SPECIALISTS (AYSS-2017), 2018, 177
  • [32] Spectral triples for nested fractals
    Guido, Daniele
    Isola, Tommaso
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2017, 11 (04) : 1413 - 1436
  • [33] Extensions and Degenerations of Spectral Triples
    Christensen, Erik
    Ivan, Cristina
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 285 (03) : 925 - 955
  • [34] Spectral triples and manifolds with boundary
    Iochum, B.
    Levy, C.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (01) : 117 - 134
  • [35] COMPACT κ-DEFORMATION AND SPECTRAL TRIPLES
    Iochum, B.
    Masson, T.
    Schuecker, T.
    Sitarz, A.
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2011, 68 (01) : 37 - 64
  • [36] Spectral triples of holonomy loops
    Aastrup, J
    Grimstrup, JM
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 264 (03) : 657 - 681
  • [37] A note on spectral triples and quasidiagonality
    Skalski, Adam
    Zacharias, Joachim
    [J]. EXPOSITIONES MATHEMATICAE, 2009, 27 (02) : 137 - 141
  • [38] Spectral Triples of Holonomy Loops
    Johannes Aastrup
    Jesper Møller Grimstrup
    [J]. Communications in Mathematical Physics, 2006, 264 : 657 - 681
  • [39] Spectral Order for Jordan Triples
    Ekaterina A. Turilova
    Jan Hamhalter
    [J]. Proceedings of the Steklov Institute of Mathematics, 2021, 313 : 258 - 262
  • [40] On the product of real spectral triples
    Vanhecke, FJ
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1999, 50 (02) : 157 - 162