Lorentz signature and twisted spectral triples

被引:0
|
作者
A. Devastato
S. Farnsworth
F. Lizzi
P. Martinetti
机构
[1] INFN sezione di Napoli,Dipartimento di Matematica
[2] Max Planck Institute for Gravitational Physics (Albert Einstein Institute),undefined
[3] Dipartimento di Fisica “E. Pancini”,undefined
[4] Università di Napoli Federico II,undefined
[5] Institut de Cíencies del Cosmos (ICCUB),undefined
[6] Universitat de Barcelona,undefined
[7] Università di Genova,undefined
关键词
Non-Commutative Geometry; Differential and Algebraic Geometry; SpaceTime Symmetries;
D O I
暂无
中图分类号
学科分类号
摘要
We show how twisting the spectral triple of the Standard Model of elementary particles naturally yields the Krein space associated with the Lorentzian signature of spacetime. We discuss the associated spectral action, both for fermions and bosons. What emerges is a tight link between twists and Wick rotation.
引用
收藏
相关论文
共 50 条
  • [21] THE SPECTRAL LOCALIZER FOR SEMIFINITE SPECTRAL TRIPLES
    Schulz-Baldes, Hermann
    Stoiber, Tom
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (01) : 121 - 134
  • [22] Spectral Flow for Nonunital Spectral Triples
    Carey, A. L.
    Gayral, V.
    Phillips, J.
    Rennie, A.
    Sukochev, F. A.
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2015, 67 (04): : 759 - 794
  • [23] The Hitchin-Kobayashi correspondence for twisted triples
    Bradlow, SB
    Kamber, FW
    Glazebrook, JF
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2000, 11 (04) : 493 - 508
  • [24] Coideal algebras from twisted Manin triples
    Belliard, S.
    Crampe, N.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (10) : 2009 - 2023
  • [25] Spectral Triples in Particle Physics
    Bochniak, Arkadiusz
    [J]. XXI INTERNATIONAL SCIENTIFIC CONFERENCE OF YOUNG SCIENTISTS AND SPECIALISTS (AYSS-2017), 2018, 177
  • [26] Spectral triples for nested fractals
    Guido, Daniele
    Isola, Tommaso
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2017, 11 (04) : 1413 - 1436
  • [27] Extensions and Degenerations of Spectral Triples
    Christensen, Erik
    Ivan, Cristina
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 285 (03) : 925 - 955
  • [28] Spectral triples and manifolds with boundary
    Iochum, B.
    Levy, C.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (01) : 117 - 134
  • [29] COMPACT κ-DEFORMATION AND SPECTRAL TRIPLES
    Iochum, B.
    Masson, T.
    Schuecker, T.
    Sitarz, A.
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2011, 68 (01) : 37 - 64
  • [30] Spectral triples of holonomy loops
    Aastrup, J
    Grimstrup, JM
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 264 (03) : 657 - 681