Curvature-direction measures of self-similar sets

被引:0
|
作者
Tilman Johannes Bohl
Martina Zähle
机构
[1] Friedrich Schiller University Jena,
来源
Geometriae Dedicata | 2013年 / 167卷
关键词
Self-similar set; Lipschitz–Killing curvature-direction measure; Fractal curvature measure; Minkowski content; Primary: 28A80, 28A75, 37A99; Secondary: 28A78, 53C65;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain fractal Lipschitz–Killing curvature-direction measures for a large class of self-similar sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F$$\end{document} in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R }^{d}$$\end{document}. Such measures jointly describe the distribution of normal vectors and localize curvature by analogues of the higher order mean curvatures of differentiable sub-manifolds. They decouple as independent products of the unit Hausdorff measure on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F$$\end{document} and a self-similar fibre measure on the sphere, which can be computed by an integral formula. The corresponding local density approach uses an ergodic dynamical system formed by extending the code space shift by a subgroup of the orthogonal group. We then give a remarkably simple proof for the resulting measure version under minimal assumptions.
引用
收藏
页码:215 / 231
页数:16
相关论文
共 50 条
  • [41] From Self-Similar Groups to Self-Similar Sets and Spectra
    Grigorchuk, Rostislav
    Nekrashevych, Volodymyr
    Sunic, Zoran
    FRACTAL GEOMETRY AND STOCHASTICS V, 2015, 70 : 175 - 207
  • [42] On the distance sets of self-similar sets
    Orponen, Tuomas
    NONLINEARITY, 2012, 25 (06) : 1919 - 1929
  • [43] JULIA SETS AND SELF-SIMILAR SETS
    KAMEYAMA, A
    TOPOLOGY AND ITS APPLICATIONS, 1993, 54 (1-3) : 241 - 251
  • [44] Arithmetic on self-similar sets
    Zhao, Bing
    Ren, Xiaomin
    Zhu, Jiali
    Jiang, Kan
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2020, 31 (04): : 595 - 606
  • [45] The dimensions of self-similar sets
    Li, WX
    Xiao, DM
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1998, 50 (04) : 789 - 799
  • [46] Irrational self-similar sets
    Jia, Qi
    Li, Yuanyuan
    Jiang, Kan
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2022, 100 (3-4): : 461 - 472
  • [47] Computability of self-similar sets
    Kamo, H
    Kawamura, K
    MATHEMATICAL LOGIC QUARTERLY, 1999, 45 (01) : 23 - 30
  • [48] Gauges for the self-similar sets
    Wen, Sheng-You
    Wen, Zhi-Xiong
    Wen, Zhi-Ying
    MATHEMATISCHE NACHRICHTEN, 2008, 281 (08) : 1205 - 1214
  • [49] Sliding of self-similar sets
    Xi, Li-feng
    Ruan, Huo-jun
    Guo, Qiu-li
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (03): : 351 - 360
  • [50] Sliding of self-similar sets
    Li-feng XI
    Huo-jun Ruan
    Qiu-li Guo
    Science in China Series A: Mathematics, 2007, 50 : 351 - 360