Curvature-direction measures of self-similar sets

被引:0
|
作者
Tilman Johannes Bohl
Martina Zähle
机构
[1] Friedrich Schiller University Jena,
来源
Geometriae Dedicata | 2013年 / 167卷
关键词
Self-similar set; Lipschitz–Killing curvature-direction measure; Fractal curvature measure; Minkowski content; Primary: 28A80, 28A75, 37A99; Secondary: 28A78, 53C65;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain fractal Lipschitz–Killing curvature-direction measures for a large class of self-similar sets \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F$$\end{document} in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R }^{d}$$\end{document}. Such measures jointly describe the distribution of normal vectors and localize curvature by analogues of the higher order mean curvatures of differentiable sub-manifolds. They decouple as independent products of the unit Hausdorff measure on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F$$\end{document} and a self-similar fibre measure on the sphere, which can be computed by an integral formula. The corresponding local density approach uses an ergodic dynamical system formed by extending the code space shift by a subgroup of the orthogonal group. We then give a remarkably simple proof for the resulting measure version under minimal assumptions.
引用
收藏
页码:215 / 231
页数:16
相关论文
共 50 条
  • [21] Asymptotics of the quantization errors for in-homogeneous self-similar measures supported on self-similar sets
    SanGuo Zhu
    Science China Mathematics, 2016, 59 : 337 - 350
  • [22] Average distances on self-similar sets and higher order average distances of self-similar measures
    D. Allen
    H. Edwards
    S. Harper
    L. Olsen
    Mathematische Zeitschrift, 2017, 287 : 287 - 324
  • [23] On singularity of energy measures on self-similar sets II
    Hino, Masanori
    Nakahara, Kenji
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 : 1019 - 1032
  • [24] A NOTE ON HAUSDORFF MEASURES OF SELF-SIMILAR SETS IN Rd
    Ma, Cai-Yun
    Wu, Yu-Feng
    ANNALES FENNICI MATHEMATICI, 2021, 46 (02): : 957 - 963
  • [25] The sets of divergence points of self-similar measures are residual
    Li, Jinjun
    Wu, Min
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 404 (02) : 429 - 437
  • [26] Renewal of singularity sets of random self-similar measures
    Barral, Julien
    Seuret, Stephane
    ADVANCES IN APPLIED PROBABILITY, 2007, 39 (01) : 162 - 188
  • [27] THE EXACT MEASURES OF A CLASS OF SELF-SIMILAR SETS ON THE PLANE
    Zhiwei Zhu (Zhaoqing University
    AnalysisinTheoryandApplications, 2008, (02) : 160 - 182
  • [28] Topological measures, image transformations and self-similar sets
    Johan F. Aarnes
    Ørjan Johansen
    Alf B. Rustad
    Acta Mathematica Hungarica, 2005, 109 : 65 - 97
  • [29] Measures with predetermined regularity and inhomogeneous self-similar sets
    Kaenmaki, Antti
    Lehrback, Juha
    ARKIV FOR MATEMATIK, 2017, 55 (01): : 165 - 184
  • [30] Topological measures, image transformations and self-similar sets
    Aarnes, JF
    Johansen, O
    Rustad, AB
    ACTA MATHEMATICA HUNGARICA, 2005, 109 (1-2) : 65 - 97