Derivation of a coupled Darcy–Reynolds equation for a fluid flow in a thin porous medium including a fissure

被引:0
|
作者
María Anguiano
Francisco Javier Suárez-Grau
机构
[1] Universidad de Sevilla,Departamento de Análisis Matemático, Facultad de Matemáticas
[2] Universidad de Sevilla,Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas
关键词
Stokes equation; Darcy’s law; Reynolds equation; Thin porous medium; Fissure; 75A05; 76A20; 76M50; 35B27;
D O I
暂无
中图分类号
学科分类号
摘要
We study the asymptotic behavior of a fluid flow in a thin porous medium of thickness ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}, which is characteristic size of the pores ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} and contains a fissure of width ηε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _\varepsilon $$\end{document}. We consider the limit when the size of the pores tends to zero, and we find a critical size ηε≈ε23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _\varepsilon \approx \varepsilon ^{2\over 3}$$\end{document} in which the flow is described by a 2D Darcy law coupled with a 1D Reynolds problem. We also discuss the other cases.
引用
收藏
相关论文
共 50 条