On the Effects of Advection and Vortex Stretching

被引:0
|
作者
Tarek M. Elgindi
In-Jee Jeong
机构
[1] UC San Diego,Department of Mathematics
[2] Korea Institute for Advanced Study, Department of Mathematics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove finite-time singularity formation for De Gregorio’s model of the three-dimensional vorticity equation in the class of Lp∩Cα(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p\cap C^\alpha (\mathbb {R})$$\end{document} vorticities for some α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document} and p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p<\infty $$\end{document}. We also prove finite-time singularity formation from smooth initial data for the Okamoto–Sakajo–Wunsch models in a new range of parameter values. As a consequence, we have finite-time singularity for certain infinite-energy solutions of the surface quasi-geostrophic equation which are Cα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\alpha $$\end{document}-regular. One of the difficulties in the models we consider is that there are competing nonlocal stabilizing effects (advection) and destabilizing effects (vortex stretching) which are of the same size in terms of scaling. Hence, it is difficult to establish the domination of one effect over the other without having strong control of the solution. We conjecture that strong solutions to the De Gregorio model exhibit the following behavior: for each 0<α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha <1$$\end{document} there exists an initial ω0∈Cα(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _0\in C^\alpha (\mathbb {R})$$\end{document} which is compactly supported for which the solution becomes singular in finite-time; on the other hand, solutions to De Gregorio’s equation are global whenever ω0∈Lp∩C1(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _0\in L^p\cap C^{1}(\mathbb {R})$$\end{document} for some p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p<\infty $$\end{document}. Such a dichotomy seems to be a genuinely non-linear effect which cannot be explained merely by scaling considerations since Cα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\alpha $$\end{document} spaces are scaling subcritical for each α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document}.
引用
收藏
页码:1763 / 1817
页数:54
相关论文
共 50 条
  • [41] On Vortex Tube Stretching and Instabilities in an Inviscid Fluid
    Friedlander, Susan
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2002, 4 (01) : 30 - 44
  • [42] Vortex stretching in a laminar boundary layer flow
    P. Petitjeans
    J. E. Wesfreid
    J. C. Attiach
    Experiments in Fluids, 1997, 22 : 351 - 353
  • [43] LAGRANGIAN FROZEN-IN HYPOTHESIS FOR VORTEX STRETCHING
    OHKITANI, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1993, 62 (02) : 390 - 394
  • [44] Turbulent energy cascade caused by vortex stretching
    Goto, Susumu
    ADVANCES IN TURBULENCE XII - PROCEEDINGS OF THE 12TH EUROMECH EUROPEAN TURBULENCE CONFERENCE, 2009, 132 : 269 - 272
  • [45] Interaction of vortex stretching with wind power fluctuations
    Alam, Jahrul
    PHYSICS OF FLUIDS, 2022, 34 (07)
  • [46] On Vortex Tube Stretching and Instabilities in an Inviscid Fluid
    S. Friedlander
    Journal of Mathematical Fluid Mechanics, 2002, 4 : 30 - 44
  • [47] Statistics of stretching fields in experimental fluid flows exhibiting chaotic advection
    Arratia, PE
    Gollub, JP
    JOURNAL OF STATISTICAL PHYSICS, 2005, 121 (5-6) : 805 - 822
  • [48] Point-vortex statistical mechanics applied to turbulence without vortex stretching
    Wu, Tong
    David, Tomos
    Bos, Wouter J. T.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2023, 2023 (11):
  • [49] Statistics of Stretching Fields in Experimental Fluid Flows Exhibiting Chaotic Advection
    P. E. Arratia
    J. P. Gollub
    Journal of Statistical Physics, 2005, 121 : 805 - 822
  • [50] Background current concept and chaotic advection in an oceanic vortex flow
    E. Ryzhov
    K. Koshel
    D. Stepanov
    Theoretical and Computational Fluid Dynamics, 2010, 24 : 59 - 64