On the Effects of Advection and Vortex Stretching

被引:0
|
作者
Tarek M. Elgindi
In-Jee Jeong
机构
[1] UC San Diego,Department of Mathematics
[2] Korea Institute for Advanced Study, Department of Mathematics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove finite-time singularity formation for De Gregorio’s model of the three-dimensional vorticity equation in the class of Lp∩Cα(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p\cap C^\alpha (\mathbb {R})$$\end{document} vorticities for some α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document} and p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p<\infty $$\end{document}. We also prove finite-time singularity formation from smooth initial data for the Okamoto–Sakajo–Wunsch models in a new range of parameter values. As a consequence, we have finite-time singularity for certain infinite-energy solutions of the surface quasi-geostrophic equation which are Cα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\alpha $$\end{document}-regular. One of the difficulties in the models we consider is that there are competing nonlocal stabilizing effects (advection) and destabilizing effects (vortex stretching) which are of the same size in terms of scaling. Hence, it is difficult to establish the domination of one effect over the other without having strong control of the solution. We conjecture that strong solutions to the De Gregorio model exhibit the following behavior: for each 0<α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha <1$$\end{document} there exists an initial ω0∈Cα(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _0\in C^\alpha (\mathbb {R})$$\end{document} which is compactly supported for which the solution becomes singular in finite-time; on the other hand, solutions to De Gregorio’s equation are global whenever ω0∈Lp∩C1(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _0\in L^p\cap C^{1}(\mathbb {R})$$\end{document} for some p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p<\infty $$\end{document}. Such a dichotomy seems to be a genuinely non-linear effect which cannot be explained merely by scaling considerations since Cα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\alpha $$\end{document} spaces are scaling subcritical for each α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document}.
引用
收藏
页码:1763 / 1817
页数:54
相关论文
共 50 条
  • [31] Chaotic advection induced by a topographic vortex in baroclinic ocean
    K. V. Koshel
    D. V. Stepanov
    Doklady Earth Sciences, 2006, 407 : 455 - 459
  • [33] Chaotic advection induced by a topographic vortex in baroclinic ocean
    Koshel, K. V.
    Stepanov, D. V.
    DOKLADY EARTH SCIENCES, 2006, 407 (03) : 455 - 459
  • [34] Absence of singular stretching of interacting vortex filaments
    Hormoz, Sahand
    Brenner, Michael P.
    JOURNAL OF FLUID MECHANICS, 2012, 707 : 191 - 204
  • [35] VORTEX STRETCHING AND RELATIVE DIFFUSION IN GRID TURBULENCE
    MORI, H
    TAKAYOSHI, K
    PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (03): : 725 - 741
  • [37] Stretching and Compression of Double Dusty Plasma Vortex
    Scurtu, Adrian
    Ticos, Dorina
    Mitu, Maria Luiza
    Udrea, Nicoleta
    Ticos, Catalin Mihai
    CRYSTALS, 2023, 13 (01)
  • [38] Vortex stretching in a laminar boundary layer flow
    Petitjeans, P
    Wesfreid, JE
    Attiach, JC
    EXPERIMENTS IN FLUIDS, 1997, 22 (04) : 351 - 353
  • [39] Vortex stretching versus production of strain/dissipation
    Tsinober, A
    TURBULENCE STRUCTURE AND VORTEX DYNAMICS, 2001, : 164 - 191
  • [40] NONLOCAL NATURE OF VORTEX STRETCHING IN AN INVISCID FLUID
    OHKITANI, K
    KISHIBA, S
    PHYSICS OF FLUIDS, 1995, 7 (02) : 411 - 421