On the Effects of Advection and Vortex Stretching

被引:0
|
作者
Tarek M. Elgindi
In-Jee Jeong
机构
[1] UC San Diego,Department of Mathematics
[2] Korea Institute for Advanced Study, Department of Mathematics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove finite-time singularity formation for De Gregorio’s model of the three-dimensional vorticity equation in the class of Lp∩Cα(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p\cap C^\alpha (\mathbb {R})$$\end{document} vorticities for some α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document} and p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p<\infty $$\end{document}. We also prove finite-time singularity formation from smooth initial data for the Okamoto–Sakajo–Wunsch models in a new range of parameter values. As a consequence, we have finite-time singularity for certain infinite-energy solutions of the surface quasi-geostrophic equation which are Cα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\alpha $$\end{document}-regular. One of the difficulties in the models we consider is that there are competing nonlocal stabilizing effects (advection) and destabilizing effects (vortex stretching) which are of the same size in terms of scaling. Hence, it is difficult to establish the domination of one effect over the other without having strong control of the solution. We conjecture that strong solutions to the De Gregorio model exhibit the following behavior: for each 0<α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha <1$$\end{document} there exists an initial ω0∈Cα(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _0\in C^\alpha (\mathbb {R})$$\end{document} which is compactly supported for which the solution becomes singular in finite-time; on the other hand, solutions to De Gregorio’s equation are global whenever ω0∈Lp∩C1(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _0\in L^p\cap C^{1}(\mathbb {R})$$\end{document} for some p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p<\infty $$\end{document}. Such a dichotomy seems to be a genuinely non-linear effect which cannot be explained merely by scaling considerations since Cα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\alpha $$\end{document} spaces are scaling subcritical for each α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document}.
引用
收藏
页码:1763 / 1817
页数:54
相关论文
共 50 条
  • [1] On the Effects of Advection and Vortex Stretching
    Elgindi, Tarek M.
    Jeong, In-Jee
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 235 (03) : 1763 - 1817
  • [2] Vortex stretching and vortex breakdown
    Petitjeans, P
    PHYSICS OF FLUIDS, 1998, 10 (09) : S10 - S10
  • [3] The stabilizing effects of axial stretching on turbulent vortex dynamics
    Nolan, DS
    PHYSICS OF FLUIDS, 2001, 13 (06) : 1724 - 1738
  • [4] EFFECTS OF DRAG-REDUCING ADDITIVES ON VORTEX STRETCHING
    GADD, GE
    NATURE, 1968, 217 (5133) : 1040 - &
  • [5] Vortex merger and chaotic advection
    Fuentes, OUV
    Muñoz, FAV
    REVISTA MEXICANA DE FISICA, 2000, 46 (04) : 411 - 412
  • [6] Dynamics and advection in a vortex parquet
    Filimonova, A. M.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2019, 27 (04): : 71 - 84
  • [7] Vortex stretching and filaments
    Petitjeans, P
    Wesfreid, JE
    APPLIED SCIENTIFIC RESEARCH, 1997, 57 (3-4): : 279 - 290
  • [8] Vortex stretching and filaments
    Petitjeans, P
    Wesfreid, JE
    ADVANCES IN TURBULENCES VI, 1996, 36 : 133 - 136
  • [9] Vortex stretching and filaments
    URA CNRS, Paris, France
    Appl Sci Res (The Hague), 3-4 (279-290):
  • [10] Depicting vortex stretching and vortex relaxing mechanisms
    Fu, S
    Li, QB
    Wang, MH
    CHINESE PHYSICS LETTERS, 2003, 20 (12) : 2195 - 2198