Coloring decompositions of complete geometric graphs

被引:0
|
作者
C. Huemer
D. Lara
C. Rubio-Montiel
机构
[1] Universitat Politècnica de Catalunya,Departament de Matemàtiques
[2] Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional,Departamento de Computación
[3] Universidad Nacional Autónoma de México,División de Matemáticas e Ingeniería, FES Acatlán
[4] UMI LAFMIA 3175 CNRS at CINVESTAV-IPN,Department of Algebra
[5] Comenius University,undefined
来源
Acta Mathematica Hungarica | 2019年 / 159卷
关键词
geometric graph; coloring; geometric chromatic index;
D O I
暂无
中图分类号
学科分类号
摘要
A decomposition of a non-empty simple graph G is a pair [G,P] such that P is a set of non-empty induced subgraphs of G, and every edge of G belongs to exactly one subgraph in P. The chromatic index χ′([G,P])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi'([G,P])$$\end{document} of a decomposition [G,P] is the smallest number k for which there exists a k-coloring of the elements of P in such a way that for every element of P all of its edges have the same color, and if two members of P share at least one vertex, then they have different colors. A long standing conjecture of Erdős–Faber–Lovász states that every decomposition [Kn,P]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[K_{n}, P]$$\end{document} of the complete graph Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_n$$\end{document} satisfies χ′([Kn,P])≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi'([K_{n}, P])\leq n$$\end{document}. In this paper we work with geometric graphs, and inspired by this formulation of the conjecture, we introduce the concept of chromatic index of a decomposition of the complete geometric graph. We present bounds for the chromatic index of several types of decompositions when the vertices of the graph are in general position. We also consider the particular case when the vertices are in convex position and present bounds for the chromatic index of a few types of decompositions.
引用
收藏
页码:429 / 446
页数:17
相关论文
共 50 条
  • [41] A Note on graphs with prescribed complete coloring numbers
    Chartrand, Gary
    Okamoto, Futaba
    Tuza, Zsolt
    Zhang, Ping
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2010, 73 : 77 - 84
  • [42] Star-Forest Decompositions of Complete Graphs
    Antic, Todor
    Glisic, Jelena
    Milivojcevic, Milan
    COMBINATORIAL ALGORITHMS, IWOCA 2024, 2024, 14764 : 126 - 137
  • [43] DECOMPOSITIONS OF COMPLETE GRAPHS INTO ISOMORPHIC BIPARTITE SUBGRAPHS
    BALAKRISHNAN, R
    KUMAR, RS
    GRAPHS AND COMBINATORICS, 1994, 10 (01) : 19 - 25
  • [44] Decompositions of edge-colored complete graphs
    Lamken, ER
    Wilson, RM
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 89 (02) : 149 - 200
  • [45] Decompositions of complete graphs into triangles and Hamilton cycles
    Bryant, D
    Maenhaut, B
    JOURNAL OF COMBINATORIAL DESIGNS, 2004, 12 (03) : 221 - 232
  • [46] Coloring Complete and Complete Bipartite Graphs from Random Lists
    Carl Johan Casselgren
    Roland Häggkvist
    Graphs and Combinatorics, 2016, 32 : 533 - 542
  • [47] Coloring Complete and Complete Bipartite Graphs from Random Lists
    Casselgren, Carl Johan
    Haggkvist, Roland
    GRAPHS AND COMBINATORICS, 2016, 32 (02) : 533 - 542
  • [48] Hamilton cycle decompositions of the tensor products of complete bipartite graphs and complete multipartite graphs
    Manikandan, R. S.
    Paulraja, P.
    DISCRETE MATHEMATICS, 2010, 310 (21) : 2776 - 2789
  • [49] On total coloring the direct product of complete graphs
    Castonguay, D.
    de Figueiredo, C. M. H.
    Kowada, L. A. B.
    Patrao, C. S. R.
    Sasaki, D.
    Valencia-Pabon, M.
    PROCEEDINGS OF THE XI LATIN AND AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, 2021, 195 : 306 - 314
  • [50] Complete Multipartite Graphs and the Relaxed Coloring Game
    Dunn, Charles
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2012, 29 (03): : 507 - 512