Crypto-Unitary Forms of Quantum Evolution Operators

被引:0
|
作者
Miloslav Znojil
机构
[1] Nuclear Physics Institute ASCR,
关键词
PT-symmetric quantum mechanics; Time-dependent Schroedinger equation; Manifestly time-dependent Hermitian Hamiltonians; Manifestly time-dependent Dyson maps; Equivalent time-independent non-Hermitian Hamiltonians;
D O I
暂无
中图分类号
学科分类号
摘要
The description of quantum evolution using unitary operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{u}(t)=\exp(-{\rm i}\mathfrak{h}t)$\end{document} requires that the underlying self-adjoint quantum Hamiltonian \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{h}$\end{document} remains time-independent. In a way extending the so called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{PT}$\end{document}-symmetric quantum mechanics to the models with manifestly time-dependent “charge” \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}(t)$\end{document} we propose and describe an extension of such an exponential-operator approach to evolution to the manifestly time-dependent self-adjoint quantum Hamiltonians \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{h}(t)$\end{document}.
引用
收藏
页码:2038 / 2045
页数:7
相关论文
共 50 条
  • [31] Quantum modular forms and Hecke operators
    Lee, Seewoo
    RESEARCH IN NUMBER THEORY, 2018, 4
  • [32] DIFFERENTIAL OPERATORS AND FAMILIES OF AUTOMORPHIC FORMS ON UNITARY GROUPS OF ARBITRARY SIGNATURE
    Eischen, Ellen
    Fintzen, Jessica
    Mantovan, Elena
    Varma, Ila
    DOCUMENTA MATHEMATICA, 2018, 23 : 445 - 495
  • [33] p-ADIC DIFFERENTIAL OPERATORS ON AUTOMORPHIC FORMS ON UNITARY GROUPS
    Eischen, Ellen E.
    ANNALES DE L INSTITUT FOURIER, 2012, 62 (01) : 177 - 243
  • [35] Non-unitary Evolution of Quantum Logics
    Fortin, Sebastian
    Holik, Federico
    Vanni, Leonardo
    NON-HERMITIAN HAMILTONIANS IN QUANTUM PHYSICS, 2016, 184 : 219 - 234
  • [36] Black holes, quantum information, and unitary evolution
    Giddings, Steven B.
    PHYSICAL REVIEW D, 2012, 85 (12):
  • [37] Quantum operator entropies under unitary evolution
    Lent, Craig S.
    PHYSICAL REVIEW E, 2019, 100 (01):
  • [38] SYMBOLS OF OPERATORS AND QUANTUM EVOLUTION
    BORSARI, I
    GRAFFI, S
    JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (09) : 4439 - 4450
  • [39] Evolution operators for quantum chains
    Sergeev, S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (08) : F209 - F213
  • [40] Pseudo-random unitary operators for quantum information processing
    Emerson, J
    Weinstein, YS
    Saraceno, M
    Lloyd, S
    Cory, DG
    SCIENCE, 2003, 302 (5653) : 2098 - 2100