Crypto-Unitary Forms of Quantum Evolution Operators

被引:0
|
作者
Miloslav Znojil
机构
[1] Nuclear Physics Institute ASCR,
关键词
PT-symmetric quantum mechanics; Time-dependent Schroedinger equation; Manifestly time-dependent Hermitian Hamiltonians; Manifestly time-dependent Dyson maps; Equivalent time-independent non-Hermitian Hamiltonians;
D O I
暂无
中图分类号
学科分类号
摘要
The description of quantum evolution using unitary operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{u}(t)=\exp(-{\rm i}\mathfrak{h}t)$\end{document} requires that the underlying self-adjoint quantum Hamiltonian \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{h}$\end{document} remains time-independent. In a way extending the so called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{PT}$\end{document}-symmetric quantum mechanics to the models with manifestly time-dependent “charge” \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}(t)$\end{document} we propose and describe an extension of such an exponential-operator approach to evolution to the manifestly time-dependent self-adjoint quantum Hamiltonians \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{h}(t)$\end{document}.
引用
收藏
页码:2038 / 2045
页数:7
相关论文
共 50 条
  • [21] CANONICAL-FORMS OF UNBOUNDED UNITARY OPERATORS IN KREIN SPACES
    GHEONDEA, A
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1988, 24 (02) : 205 - 224
  • [22] Differential operators, pullbacks, and families of automorphic forms on unitary groups
    Eischen, Ellen Elizabeth
    ANNALES MATHEMATIQUES DU QUEBEC, 2016, 40 (01): : 55 - 82
  • [23] Optimal approximation to unitary quantum operators with linear optics
    Juan Carlos Garcia-Escartin
    Vicent Gimeno
    Julio José Moyano-Fernández
    Quantum Information Processing, 2021, 20
  • [24] Quantum optics networks, unitary operators and computer algebra
    Steeb, Willi-Hans
    Hardy, Yorick
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2008, 19 (07): : 1069 - 1078
  • [25] Quantum Simulation of Open Quantum Systems Using a Unitary Decomposition of Operators
    Schlimgen, Anthony W.
    Head-Marsden, Kade
    Sager, LeeAnn M.
    Narang, Prineha
    Mazziotti, David A.
    PHYSICAL REVIEW LETTERS, 2021, 127 (27)
  • [26] Quantum time delay for unitary operators: General theory
    Sambou, D.
    Tiedra de Aldecoa, R.
    REVIEWS IN MATHEMATICAL PHYSICS, 2019, 31 (06)
  • [27] METHOD FOR CONSTRUCTION OF UNITARY OPERATORS IN QUANTUM FIELD THEORY
    MORAVEK, PH
    JOSEPH, DW
    JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (11) : 1363 - &
  • [28] Unitary Operators Over Quantum Systems with Several Levels
    Morales-Luna, G.
    QUANTUM FEST 2019 INTERNATIONAL CONFERENCE ON QUANTUM PHENOMENA, QUANTUM CONTROL AND QUANTUM OPTICS, 2020, 1540
  • [29] Optimal approximation to unitary quantum operators with linear optics
    Garcia-Escartin, Juan Carlos
    Gimeno, Vicent
    Moyano-Fernandez, Julio Jose
    QUANTUM INFORMATION PROCESSING, 2021, 20 (09)