Crypto-Unitary Forms of Quantum Evolution Operators

被引:0
|
作者
Miloslav Znojil
机构
[1] Nuclear Physics Institute ASCR,
关键词
PT-symmetric quantum mechanics; Time-dependent Schroedinger equation; Manifestly time-dependent Hermitian Hamiltonians; Manifestly time-dependent Dyson maps; Equivalent time-independent non-Hermitian Hamiltonians;
D O I
暂无
中图分类号
学科分类号
摘要
The description of quantum evolution using unitary operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{u}(t)=\exp(-{\rm i}\mathfrak{h}t)$\end{document} requires that the underlying self-adjoint quantum Hamiltonian \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{h}$\end{document} remains time-independent. In a way extending the so called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{PT}$\end{document}-symmetric quantum mechanics to the models with manifestly time-dependent “charge” \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{C}(t)$\end{document} we propose and describe an extension of such an exponential-operator approach to evolution to the manifestly time-dependent self-adjoint quantum Hamiltonians \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{h}(t)$\end{document}.
引用
收藏
页码:2038 / 2045
页数:7
相关论文
共 50 条
  • [1] Crypto-Unitary Forms of Quantum Evolution Operators
    Znojil, Miloslav
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (06) : 2038 - 2045
  • [2] DISTORTION COEFFICIENTS FOR CRYPTO-UNITARY OPERATORS
    HOLBROOK, JAR
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1978, 19 (03) : 189 - 205
  • [3] Quadratic forms in unitary operators
    Pisier, Gilles
    Linear Algebra and Its Applications, 1997, 267 (1-3): : 125 - 137
  • [4] Quadratic forms in unitary operators
    Pisier, G
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 267 : 125 - 137
  • [5] Diagonal unitary and orthogonal symmetries in quantum theory: II. Evolution operators
    Singh, Satvik
    Nechita, Ion
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (25)
  • [6] Quantum synthesis of arbitrary unitary operators
    Hladky, B.
    Drobny, G.
    Buzek, V.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 61 (02): : 221021 - 221026
  • [7] Implementing unitary operators in quantum computation
    Kim, J
    Lee, JS
    Lee, S
    PHYSICAL REVIEW A, 2000, 61 (03) : 4
  • [8] Quantum synthesis of arbitrary unitary operators
    Hladky, B
    Drobny, G
    Buzek, V
    PHYSICAL REVIEW A, 2000, 61 (02): : 6
  • [9] Storing unitary operators in quantum states
    Kim, J
    Cheong, Y
    Lee, JS
    Lee, S
    PHYSICAL REVIEW A, 2002, 65 (01): : 4
  • [10] Storing unitary operators in quantum states
    Kim, Jaehyun
    Cheong, Yongwook
    Lee, Jae-Seung
    Lee, Soonchil
    Physical Review A. Atomic, Molecular, and Optical Physics, 2002, 65 (01): : 123021 - 123024