Approximating the Degree-Bounded Minimum Diameter Spanning Tree Problem

被引:0
|
作者
Jochen Könemann
Asaf Levin
Amitabh Sinha
机构
[1] Department of Combinatorics and Optimization,
[2] University of Waterloo,undefined
[3] 200 University Avenue West,undefined
[4] Waterloo,undefined
[5] Ontario,undefined
[6] N2L 3G1,undefined
[7] Faculty of Industrial Engineering and Management,undefined
[8] The Technion,undefined
[9] Haifa 32000,undefined
[10] Business School,undefined
[11] University of Michigan,undefined
[12] Ann Arbor,undefined
[13] MI 48103,undefined
来源
Algorithmica | 2005年 / 41卷
关键词
Approximation algorithms; Spanning trees; Bicriteria approximation; Degree-bounded spanning trees;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of finding a minimum diameter spanning tree with maximum node degree $B$ in a complete undirected edge-weighted graph. We provide an $O(\sqrt{\log_Bn})$-approximation algorithm for the problem. Our algorithm is purely combinatorial, and relies on a combination of filtering and divide and conquer.
引用
收藏
页码:117 / 129
页数:12
相关论文
共 50 条
  • [11] Improved heuristics for the bounded-diameter minimum spanning tree problem
    Alok Singh
    Ashok K. Gupta
    Soft Computing, 2007, 11 : 911 - 921
  • [12] An adaptive heuristic to the bounded-diameter minimum spanning tree problem
    Javad Akbari Torkestani
    Soft Computing, 2012, 16 : 1977 - 1988
  • [13] Improved heuristics for the bounded-diameter minimum spanning tree problem
    Singh, Alok
    Gupta, Ashok K.
    SOFT COMPUTING, 2007, 11 (10) : 911 - 921
  • [14] An adaptive heuristic to the bounded-diameter minimum spanning tree problem
    Torkestani, Javad Akbari
    SOFT COMPUTING, 2012, 16 (11) : 1977 - 1988
  • [15] ON THE MINIMUM DIAMETER SPANNING TREE PROBLEM
    HASSIN, R
    TAMIR, A
    INFORMATION PROCESSING LETTERS, 1995, 53 (02) : 109 - 111
  • [16] New Heuristic Approaches for the Bounded-Diameter Minimum Spanning Tree Problem
    Steitz, Wolfgang
    INFORMS JOURNAL ON COMPUTING, 2015, 27 (01) : 151 - 163
  • [17] Simulated Annealing Algorithm for the Bounded-Diameter Minimum Spanning Tree Problem
    Hong, Li
    Zhong, Yiwen
    Lin, Juan
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 215 - 218
  • [18] Serial and parallel memetic algorithms for the bounded diameter minimum spanning tree problem
    Vuppuluri, Prem Prakash
    Chellapilla, Patvardhan
    EXPERT SYSTEMS, 2021, 38 (02)
  • [19] Probabilistic analysis of an algorithm for the minimum spanning tree problem with diameter bounded below
    Gimadi E.K.
    Shin E.Y.
    Journal of Applied and Industrial Mathematics, 2015, 9 (04) : 480 - 488
  • [20] On Approximating Degree-Bounded Network Design Problems
    Guo, Xiangyu
    Kortsarz, Guy
    Laekhanukit, Bundit
    Li, Shi
    Vaz, Daniel
    Xian, Jiayi
    ALGORITHMICA, 2022, 84 (05) : 1252 - 1278