On a separable weak version of the bounded approximation property

被引:0
|
作者
Eve Oja
机构
[1] University of Tartu,Institute of Mathematics and Statistics
[2] Estonian Academy of Sciences,undefined
来源
Archiv der Mathematik | 2016年 / 107卷
关键词
Banach spaces; Bounded approximation properties; Separability; Primary: 46B28; Secondary: 46B20;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, Lee introduced and studied the separable weak bounded approximation property (BAP). Lee proved that the separable weak BAP of X∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X^*}$$\end{document}, the dual space of a Banach space X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X}$$\end{document}, coincides with the BAP of X∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X^*}$$\end{document} whenever X∗∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X^{**}}$$\end{document} has the weak Radon–Nikodým property. We show that the separable weak BAP and the BAP are always the same properties.
引用
收藏
页码:185 / 189
页数:4
相关论文
共 50 条
  • [21] The uniform bounded deciding property and the separable quotient problem
    Lopez-Alfonso, S.
    Moll, S.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1223 - 1230
  • [22] Operators with the Lipschitz bounded approximation property
    Liu, Rui
    Shen, Jie
    Zheng, Bentuo
    [J]. SCIENCE CHINA-MATHEMATICS, 2023, 66 (07) : 1545 - 1554
  • [23] BV has the bounded approximation property
    Alberti, G
    Csörnyei, M
    Pelczynski, A
    Preiss, D
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2005, 15 (01) : 1 - 7
  • [24] Operators with the Lipschitz bounded approximation property
    Rui Liu
    Jie Shen
    Bentuo Zheng
    [J]. Science China Mathematics, 2023, 66 (07) : 1545 - 1554
  • [25] On the bounded approximation property in Banach spaces
    Jesús M. F. Castillo
    Yolanda Moreno
    [J]. Israel Journal of Mathematics, 2013, 198 : 243 - 259
  • [26] ON THE BOUNDED APPROXIMATION PROPERTY IN BANACH SPACES
    Castillo, Jesus M. F.
    Moreno, Yolanda
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2013, 198 (01) : 243 - 259
  • [27] Operators with the Lipschitz bounded approximation property
    Rui Liu
    Jie Shen
    Bentuo Zheng
    [J]. Science China Mathematics, 2023, 66 : 1545 - 1554
  • [28] A NEW CHARACTERIZATION OF THE BOUNDED APPROXIMATION PROPERTY
    Kim, Ju Myung
    Lee, Keun Young
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (04): : 672 - 677
  • [29] BV has the bounded approximation property
    Alberti G.
    Csörnyei M.
    Pelczyński A.
    Preiss D.
    [J]. The Journal of Geometric Analysis, 2005, 15 (1): : 1 - 7
  • [30] The bounded approximation property for the predual of the space of bounded holomorphic mappings
    Caliskan, Erhan
    [J]. STUDIA MATHEMATICA, 2006, 177 (03) : 225 - 233