ON THE BOUNDED APPROXIMATION PROPERTY IN BANACH SPACES

被引:6
|
作者
Castillo, Jesus M. F. [1 ]
Moreno, Yolanda [2 ]
机构
[1] Univ Extremadura, Dept Matemat, Badajoz 06011, Spain
[2] Univ Extremadura, Escuela Politecn, Caceres 10071, Spain
关键词
3-SPACE PROBLEMS; TWISTED SUMS; SUBSPACES; THEOREM;
D O I
10.1007/s11856-013-0019-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the kernel of a quotient operator from an L-1-space onto a Banach space X with the Bounded Approximation Property (BAP) has the BAP. This completes earlier results of Lusky-case l(1)-and Figiel, Johnson and Pelczynski-case X* separable. Given a Banach space X, we show that if the kernel of a quotient map from some L-1-space onto X has the BAP, then every kernel of every quotient map from any L-1-space onto X has the BAP. The dual result for L-infinity-spaces also holds: if for some L-infinity-space E some quotient E/X has the BAP, then for every L-infinity-space E every quotient E/X has the BAP.
引用
收藏
页码:243 / 259
页数:17
相关论文
共 50 条