Transformation Groups on White Noise Functionals and Their Applications

被引:0
|
作者
D. M. Chung
U. C. Ji
机构
[1] Department of Mathematics,
[2] Sogang University,undefined
[3] Seoul,undefined
[4] 121-742 Korea,undefined
来源
Applied Mathematics and Optimization | 1998年 / 37卷
关键词
Key words. White noise functional, Gross Laplacian, Number operator, One-parameter group, Infinitesimal generator, Cauchy problem. AMS Classification. Primary 60H30, Secondary 46F25.;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we first construct a two-parameter transformation group G on the space of test white noise functionals in which the adjoints of Kuo's Fourier and Kuo's Fourier—Mehler transforms are included. Next we show that the group G is a two-dimensional complex Lie group whose infinitesimal generators are the Gross Laplacian ΔG and the number operator N , and then find an explicit description of a differentiable one-parameter subgroup of G whose infinitesimal generator is aΔG +bN . As an application, we study the solution and fundamental solution for the Cauchy problem associated with aΔ G +bN . Finally we show that each element of the adjoint group G* of G can be characterized in terms of differentiation and multiplication operators.
引用
收藏
页码:205 / 223
页数:18
相关论文
共 50 条
  • [21] SOME ASPECTS OF QUADRATIC GENERALIZED WHITE NOISE FUNCTIONALS
    Si, Si
    Hida, Takeyuki
    QUANTUM BIO-INFORMATICS II: FROM QUANTUM INFORMATION TO BIO-INFORMATICS, 2009, 24 : 184 - +
  • [22] Nonparametric transformation to white noise
    Linton, Oliver B.
    Mammen, Enno
    JOURNAL OF ECONOMETRICS, 2008, 142 (01) : 241 - 264
  • [23] SHIFTED GENERALIZED MEHLER SEMIGROUPS ON WHITE NOISE FUNCTIONALS
    Ji, Un Cig
    Lee, Mi Ra
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2023, 43 (02): : 185 - 205
  • [24] A comparison of two spaces of generalized white noise functionals
    Våge, G
    POTENTIAL ANALYSIS, 1999, 10 (01) : 1 - 26
  • [25] The (p, q)-Deformed Square White Noise Functionals
    Moniem, Ashraf A.
    Riahi, Anis
    Ayadi, Mohamed
    Alebraheem, Jawdat
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2023, 17 (02)
  • [27] An Analytic Characterization of (p, q)-White Noise Functionals
    Riahi, Anis
    Ettaieb, Amine
    Chammam, Wathek
    Alhussain, Ziyad Ali
    JOURNAL OF MATHEMATICS, 2020, 2020
  • [28] The (p, q)-Deformed Square White Noise Functionals
    Ashraf A. Moniem
    Anis Riahi
    Mohamed Ayadi
    Jawdat Alebraheem
    Complex Analysis and Operator Theory, 2023, 17
  • [29] Intersection local times as generalized white noise functionals
    DeFaria, M
    Hida, T
    Streit, L
    Watanabe, H
    ACTA APPLICANDAE MATHEMATICAE, 1997, 46 (03) : 351 - 362
  • [30] Interacting Fock expansion of Levy white noise functionals
    Huang, ZY
    Wu, Y
    ACTA APPLICANDAE MATHEMATICAE, 2004, 82 (03) : 333 - 352