Intersection local times as generalized white noise functionals

被引:22
|
作者
DeFaria, M
Hida, T
Streit, L
Watanabe, H
机构
[1] UNIV BIELEFELD, BIBOS, D-33501 BIELEFELD, GERMANY
[2] OKAYAMA UNIV SCI, OKAYAMA 700, JAPAN
关键词
Brownian motion; local time; white noise analysis;
D O I
10.1023/A:1005782030567
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any dimension we present the expansions of Brownian motion self-intersection local times in terms of multiple Wiener integrals. Suitably subtracted, they exist in the sense of generalized white noise functionals; their kernel functions are given in closed (and remarkably simple) form.
引用
收藏
页码:351 / 362
页数:12
相关论文
共 50 条
  • [1] Intersection Local Times as Generalized White Noise Functionals
    M. de Faria
    T. Hida
    L. Streit
    H. Watanabe
    [J]. Acta Applicandae Mathematica, 1997, 46 : 351 - 362
  • [2] Intersection local times of independent Brownian motions as generalized white noise functionals
    Albeverio, S
    Oliveira, MJ
    Streit, L
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2001, 69 (03) : 221 - 241
  • [3] Intersection Local Times of Independent Brownian Motions as Generalized White Noise Functionals
    Sergio Albeverio
    Maria João Oliveira
    Ludwig Streit
    [J]. Acta Applicandae Mathematica, 2001, 69 : 221 - 241
  • [4] Intersection Local Times of Independent Fractional Brownian Motions as Generalized White Noise Functionals
    Oliveira, Maria Joao
    da Silva, Jose Luis
    Streit, Ludwig
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2011, 113 (01) : 17 - 39
  • [5] Intersection Local Times of Independent Fractional Brownian Motions as Generalized White Noise Functionals
    Maria João Oliveira
    José Luís da Silva
    Ludwig Streit
    [J]. Acta Applicandae Mathematicae, 2011, 113 : 17 - 39
  • [6] Intersection local times of fractional Brownian motions with H ∈ (0,1) as generalized white noise functionals
    Drumond, Custodia
    Oliveira, Maria Joao
    da Silva, Jose Luis
    [J]. STOCHASTIC AND QUANTUM DYNAMICS OF BIOMOLECULAR SYSTEMS, 2008, 1021 : 34 - +
  • [7] Multiple intersection local times in terms of white noise
    Mendonca, S
    Streit, L
    [J]. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2001, 4 (04) : 533 - 543
  • [8] Self-Intersection Local Times of Generalized Mixed Fractional Brownian Motion as White Noise Distributions
    Suryawan, Herry P.
    Gunarso, Boby
    [J]. INTERNATIONAL CONFERENCE ON MATHEMATICS: EDUCATION, THEORY AND APPLICATION, 2017, 855
  • [9] Entire functionals and generalized functionals in white noise analysis
    Kubo, I
    [J]. ANALYSIS ON INFINITE-DIMENSIONAL LIE GROUPS AND ALGEBRAS, 1998, : 207 - 215
  • [10] NOTE ON GENERALIZED WHITE NOISE FUNCTIONALS
    Hida, Takeyuki
    [J]. QUANTUM BIO-INFORMATICS III: FROM QUANTUM INFORMATION TO BIO-INFORMATICS, 2010, 26 : 101 - 109