Numerical simulation of nonholonomic rigid-body systems

被引:0
|
作者
Yu. M. Andreev
O. K. Morachkovskii
机构
[1] National Technical University (Kharkov Polytechnic Institute),
来源
关键词
computer algebra system; equations of motion for systems of rigid bodies; holonomic and nonholonomic systems; D’Alembert-Lagrange principle;
D O I
暂无
中图分类号
学科分类号
摘要
The paper proposes computer algebra system (CAS) algorithms for computer-assisted derivation of the equations of motion for systems of rigid bodies with holonomic and nonholonomic constraints that are linear with respect to the generalized velocities. The main advantages of using the D’Alembert-Lagrange principle for the CSA-based derivation of the equations of motion for nonholonomic systems of rigid bodies are demonstrated. Among them are universality, algorithmizability, computational efficiency, and simplicity of deriving equations for holonomic and nonholonomic systems in terms of generalized coordinates or pseudo-velocities
引用
收藏
页码:1052 / 1060
页数:8
相关论文
共 50 条
  • [1] Numerical simulation of nonholonomic rigid-body systems
    Andreev, Yu. M.
    Morachkovskii, O. K.
    [J]. INTERNATIONAL APPLIED MECHANICS, 2006, 42 (09) : 1052 - 1060
  • [2] KINEMATICS AND DYNAMICS OF A RIGID-BODY IN NONHOLONOMIC COORDINATES
    MLADENOVA, CD
    [J]. SYSTEMS & CONTROL LETTERS, 1994, 22 (04) : 257 - 265
  • [3] Dynamics of Holonomic Rigid-Body Systems
    Yu. M. Andreev
    O. K. Morachkovskii
    [J]. International Applied Mechanics, 2005, 41 : 817 - 824
  • [4] Analysis of rigid-body dynamic models for simulation of systems with frictional contacts
    Song, P
    Kraus, P
    Kumar, V
    Dupont, P
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2001, 68 (01): : 118 - 128
  • [5] Dynamics of holonomic rigid-body systems
    Andreev, YM
    Morachkovskii, OK
    [J]. INTERNATIONAL APPLIED MECHANICS, 2005, 41 (07) : 817 - 824
  • [6] Singularity of nonideal rigid-body systems
    Yao, Wenli
    Xu, Jian
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 : 248 - 251
  • [7] Accurate and efficient simulation of rigid-body rotations
    Buss, SR
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 164 (02) : 377 - 406
  • [8] Mixing deformable and rigid-body mechanics simulation
    Lenoir, J
    Fonteneau, S
    [J]. COMPUTER GRAPHICS INTERNATIONAL, PROCEEDINGS, 2004, : 327 - 334
  • [9] A symplectic method for rigid-body molecular simulation
    Kol, A
    Laird, BB
    Leimkuhler, BJ
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (07): : 2580 - 2588
  • [10] Knowledge-based synthesis of numerical programs for simulation of rigid-body systems in physics-based animation
    Ellman, T
    Deak, R
    Fotinatos, J
    [J]. ASE 2002: 17TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING, 2002, : 93 - 104