Numerical simulation of nonholonomic rigid-body systems

被引:0
|
作者
Yu. M. Andreev
O. K. Morachkovskii
机构
[1] National Technical University (Kharkov Polytechnic Institute),
来源
关键词
computer algebra system; equations of motion for systems of rigid bodies; holonomic and nonholonomic systems; D’Alembert-Lagrange principle;
D O I
暂无
中图分类号
学科分类号
摘要
The paper proposes computer algebra system (CAS) algorithms for computer-assisted derivation of the equations of motion for systems of rigid bodies with holonomic and nonholonomic constraints that are linear with respect to the generalized velocities. The main advantages of using the D’Alembert-Lagrange principle for the CSA-based derivation of the equations of motion for nonholonomic systems of rigid bodies are demonstrated. Among them are universality, algorithmizability, computational efficiency, and simplicity of deriving equations for holonomic and nonholonomic systems in terms of generalized coordinates or pseudo-velocities
引用
收藏
页码:1052 / 1060
页数:8
相关论文
共 50 条
  • [11] Numerical Methods to Compute the Coriolis Matrix and Christoffel Symbols for Rigid-Body Systems
    Echeandia, Sebastian
    Wensing, Patrick M.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2021, 16 (09):
  • [13] ALMOST POISSON INTEGRATION OF RIGID-BODY SYSTEMS
    AUSTIN, MA
    KRISHNAPRASAD, PS
    WANG, LS
    JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 107 (01) : 105 - 117
  • [14] On frictionless impact models in rigid-body systems
    Glocker, C
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 359 (1789): : 2385 - 2404
  • [15] Algorithm for numerical integration of the rigid-body equations of motion
    Omelyan, IP
    PHYSICAL REVIEW E, 1998, 58 (01): : 1169 - 1172
  • [16] Numerical simulation of multibody systems: The rigid body problem
    Rochinha, FA
    Sampaio, R
    NUMERICAL METHODS IN ENGINEERING '96, 1996, : 605 - 610
  • [17] Combining deformable- and rigid-body mechanics simulation
    Jansson, J
    Vergeest, JSM
    VISUAL COMPUTER, 2003, 19 (05): : 280 - 290
  • [18] Combining deformable- and rigid-body mechanics simulation
    Johan Jansson
    Joris S.M. Vergeest
    The Visual Computer, 2003, 19 : 280 - 290
  • [19] Comparison of automatic and symbolic differentiation in mathematical modeling and computer simulation of rigid-body systems
    Dürrbaum, A
    Klier, W
    Hahn, H
    MULTIBODY SYSTEM DYNAMICS, 2002, 7 (04) : 331 - 355
  • [20] Comparison of Automatic and Symbolic Differentiation in Mathematical Modeling and Computer Simulation of Rigid-Body Systems
    Axel Dürrbaum
    Willy Klier
    Hubert Hahn
    Multibody System Dynamics, 2002, 7 : 331 - 355