Emergent second law for non-equilibrium steady states

被引:0
|
作者
José Nahuel Freitas
Massimiliano Esposito
机构
[1] University of Luxembourg,Complex Systems and Statistical Mechanics, Department of Physics and Materials Science
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Gibbs distribution universally characterizes states of thermal equilibrium. In order to extend the Gibbs distribution to non-equilibrium steady states, one must relate the self-information I(x)=−log(Pss(x))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{{{{{\mathcal{I}}}}}}}}(x)=-\!\log ({P}_{{{{{{{{\rm{ss}}}}}}}}}(x))$$\end{document} of microstate x to measurable physical quantities. This is a central problem in non-equilibrium statistical physics. By considering open systems described by stochastic dynamics which become deterministic in the macroscopic limit, we show that changes ΔI=I(xt)−I(x0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\Delta }}{{{{{{{\mathcal{I}}}}}}}}={{{{{{{\mathcal{I}}}}}}}}({x}_{t})-{{{{{{{\mathcal{I}}}}}}}}({x}_{0})$$\end{document} in steady state self-information along deterministic trajectories can be bounded by the macroscopic entropy production Σ. This bound takes the form of an emergent second law Σ+kbΔI≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\Sigma }}+{k}_{b}{{\Delta }}{{{{{{{\mathcal{I}}}}}}}}\,\ge \,0$$\end{document}, which contains the usual second law Σ ≥ 0 as a corollary, and is saturated in the linear regime close to equilibrium. We thus obtain a tighter version of the second law of thermodynamics that provides a link between the deterministic relaxation of a system and the non-equilibrium fluctuations at steady state. In addition to its fundamental value, our result leads to novel methods for computing non-equilibrium distributions, providing a deterministic alternative to Gillespie simulations or spectral methods.
引用
收藏
相关论文
共 50 条
  • [31] Non-Equilibrium Steady States for Chains of Four Rotors
    Cuneo, N.
    Eckmann, J. -P.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 345 (01) : 185 - 221
  • [32] Detailed balance has a counterpart in non-equilibrium steady states
    Evans, RML
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (02): : 293 - 313
  • [33] Thermodynamics and Stability of Non-Equilibrium Steady States in Open Systems
    Bulicek, Miroslav
    Malek, Josef
    Prusa, Vit
    ENTROPY, 2019, 21 (07)
  • [34] Fluctuation relations in simple examples of non-equilibrium steady states
    Chetrite, Raphael
    Falkovich, Gregory
    Gawedzki, Krzysztof
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
  • [36] NON-EQUILIBRIUM STEADY-STATES OF FERROMAGNETS ILLUMINATED BY MICROWAVES
    KUMARI, ASS
    SHRIVASTAVA, KN
    PHYSICA B & C, 1982, 114 (03): : 336 - 344
  • [37] Fully differentiable optimization protocols for non-equilibrium steady states
    Vargas-Hernandez, Rodrigo A.
    Chen, Ricky T. Q.
    Jung, Kenneth A.
    Brumer, Paul
    NEW JOURNAL OF PHYSICS, 2021, 23 (12):
  • [38] FLUCTUATIONS ABOUT SIMPLE NON-EQUILIBRIUM STEADY-STATES
    TREMBLAY, AMS
    ARAI, M
    SIGGIA, ED
    PHYSICAL REVIEW A, 1981, 23 (03): : 1451 - 1480
  • [39] CRITICAL FLUCTUATIONS AROUND NON-EQUILIBRIUM STEADY-STATES
    VVEDENSKY, DD
    ELDERFIELD, DJ
    CHANG, TS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (08): : L423 - L426
  • [40] Adiabatic Non-Equilibrium Steady States in the Partition Free Approach
    Horia D. Cornean
    Pierre Duclos
    Radu Purice
    Annales Henri Poincaré, 2012, 13 : 827 - 856