Emergent second law for non-equilibrium steady states

被引:0
|
作者
José Nahuel Freitas
Massimiliano Esposito
机构
[1] University of Luxembourg,Complex Systems and Statistical Mechanics, Department of Physics and Materials Science
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Gibbs distribution universally characterizes states of thermal equilibrium. In order to extend the Gibbs distribution to non-equilibrium steady states, one must relate the self-information I(x)=−log(Pss(x))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{{{{{\mathcal{I}}}}}}}}(x)=-\!\log ({P}_{{{{{{{{\rm{ss}}}}}}}}}(x))$$\end{document} of microstate x to measurable physical quantities. This is a central problem in non-equilibrium statistical physics. By considering open systems described by stochastic dynamics which become deterministic in the macroscopic limit, we show that changes ΔI=I(xt)−I(x0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\Delta }}{{{{{{{\mathcal{I}}}}}}}}={{{{{{{\mathcal{I}}}}}}}}({x}_{t})-{{{{{{{\mathcal{I}}}}}}}}({x}_{0})$$\end{document} in steady state self-information along deterministic trajectories can be bounded by the macroscopic entropy production Σ. This bound takes the form of an emergent second law Σ+kbΔI≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\Sigma }}+{k}_{b}{{\Delta }}{{{{{{{\mathcal{I}}}}}}}}\,\ge \,0$$\end{document}, which contains the usual second law Σ ≥ 0 as a corollary, and is saturated in the linear regime close to equilibrium. We thus obtain a tighter version of the second law of thermodynamics that provides a link between the deterministic relaxation of a system and the non-equilibrium fluctuations at steady state. In addition to its fundamental value, our result leads to novel methods for computing non-equilibrium distributions, providing a deterministic alternative to Gillespie simulations or spectral methods.
引用
收藏
相关论文
共 50 条
  • [21] Caloric and entropic temperatures in non-equilibrium steady states
    Jou, D.
    Restuccia, L.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 460 : 246 - 253
  • [22] Towards a classification scheme for non-equilibrium steady states
    Zia, R. K. P.
    Schmittmann, B.
    COMPUTER SIMULATION STUDIES IN CONDENSED MATTER PHYSICS XX, CSP-2007: PROCEEDINGS OF THE 20TH WORKSHOP, 2010, 7 : 112 - 115
  • [23] Non-Equilibrium Steady States for Chains of Four Rotors
    N. Cuneo
    J.-P. Eckmann
    Communications in Mathematical Physics, 2016, 345 : 185 - 221
  • [24] ENTROPY BALANCE FOR NON-EQUILIBRIUM STEADY-STATES
    FEIGENBAUM, M
    SERTORIO, L
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1981, 64 (02): : 252 - 260
  • [25] Non-Equilibrium Steady States in Conformal Field Theory
    Bernard, Denis
    Doyon, Benjamin
    ANNALES HENRI POINCARE, 2015, 16 (01): : 113 - 161
  • [26] A MINIMUM-PRINCIPLE FOR NON-EQUILIBRIUM STEADY STATES
    BAK, TA
    JOURNAL OF PHYSICAL CHEMISTRY, 1955, 59 (07): : 665 - 668
  • [27] Non-Equilibrium Steady States in Conformal Field Theory
    Denis Bernard
    Benjamin Doyon
    Annales Henri Poincaré, 2015, 16 : 113 - 161
  • [28] Modeling of biomolecular machines in non-equilibrium steady states
    Speck, Thomas
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (23):
  • [29] THERMODYNAMICS OF STABILITY OF NON-EQUILIBRIUM STEADY-STATES
    RASTOGI, RP
    SHABD, R
    JOURNAL OF CHEMICAL EDUCATION, 1983, 60 (07) : 540 - 545
  • [30] Logarithmic Sobolev Inequalities for Non-equilibrium Steady States
    Monmarche, Pierre
    Wang, Songbo
    POTENTIAL ANALYSIS, 2025,