Involutions in Sn and associated coadjoint orbits

被引:0
|
作者
Panov A.N. [1 ]
机构
[1] Samara State University, Samara
关键词
Russia; Main Statement; Coadjoint Orbit; Canonical Element;
D O I
10.1007/s10958-008-9016-4
中图分类号
学科分类号
摘要
The coadjoint orbits of the group UT(n, K) associated with involutions are studied. A formula for the dimension of these orbits is obtained. A polarization for the canonical element of such an orbit is constructed. A system of generators in the defining ideal of such an orbit is found. Bibliography: 7 titles. © 2008 Springer Science+Business Media, Inc.
引用
收藏
页码:3018 / 3031
页数:13
相关论文
共 50 条
  • [41] Nilpotent coadjoint orbits in small characteristic
    Xue, Ting
    JOURNAL OF ALGEBRA, 2014, 397 : 111 - 140
  • [42] Quantum coadjoint orbits in gl(n)
    Donin, J
    Mudrov, A
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2002, 52 (11) : 1207 - 1212
  • [43] Nonlinear flag manifolds as coadjoint orbits
    Stefan Haller
    Cornelia Vizman
    Annals of Global Analysis and Geometry, 2020, 58 : 385 - 413
  • [44] Kirwan polyhedron of holomorphic coadjoint orbits
    Deltour, G.
    TRANSFORMATION GROUPS, 2012, 17 (02) : 351 - 392
  • [45] Poisson structures transverse to coadjoint orbits
    Cushman, R
    Roberts, M
    BULLETIN DES SCIENCES MATHEMATIQUES, 2002, 126 (07): : 525 - 534
  • [46] Semisimple coadjoint orbits and cotangent bundles
    Torres, David Martinez
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2016, 48 : 977 - 984
  • [47] Fluid Implicit Particles on Coadjoint Orbits
    Nabizadeh, Mohammad sina
    Roy-chowdhury, Ritoban
    Yin, Hang
    Ramamoorthi, Ravi
    Chern, Albert
    ACM TRANSACTIONS ON GRAPHICS, 2024, 43 (06):
  • [48] Magnetic geodesic flows on coadjoint orbits
    Bolsinov, Alexey V.
    Jovanovic, Bozidar
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (16): : L247 - L252
  • [49] Towards Bosonization of Virasoro Coadjoint Orbits
    Alekseev, Anton
    Chekeres, Olga
    Youmans, Donald R.
    ANNALES HENRI POINCARE, 2024, 25 (01): : 5 - 34
  • [50] Elliptic Coadjoint Orbits of Holomorphic Type
    Sekiguchi, Hideko
    JOURNAL OF LIE THEORY, 2023, 33 (03) : 713 - 718