Fluid Implicit Particles on Coadjoint Orbits

被引:0
|
作者
Nabizadeh, Mohammad sina [1 ]
Roy-chowdhury, Ritoban [1 ]
Yin, Hang [1 ]
Ramamoorthi, Ravi [1 ]
Chern, Albert [1 ]
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2024年 / 43卷 / 06期
关键词
Geometric fluid mechanics; Hamiltonian mechanics; Structure preserving discretizations; Mimetic interpolation; ORDER GEOMETRIC METHODS; IN-CELL METHOD; ISOGEOMETRIC ANALYSIS; B-SPLINES; LIE; FLIP; INTERPOLATION; EQUATIONS; HELICITY; IDEAL;
D O I
10.1145/3687970
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose Coadjoint Orbit FLIP (CO-FLIP), a high order accurate, structure preserving fluid simulation method in the hybrid Eulerian-Lagrangian framework. We start with a Hamiltonian formulation of the incompressible Euler Equations, and then, using a local, explicit, and high order divergence free interpolation, construct a modified Hamiltonian system that governs our discrete Euler flow. The resulting discretization, when paired with a geometric time integration scheme, is energy and circulation preserving (formally the flow evolves on a coadjoint orbit) and is similar to the Fluid Implicit Particle (FLIP) method. CO-FLIP enjoys multiple additional properties including that the pressure projection is exact in the weak sense, and the particle-to-grid transfer is an exact inverse of the grid-to-particle interpolation. The method is demonstrated numerically with outstanding stability, energy, and Casimir preservation. We show that the method produces benchmarks and turbulent visual effects even at low grid resolutions.
引用
收藏
页数:38
相关论文
共 50 条
  • [1] Spinning particles, coadjoint orbits and Hamiltonian formalism
    Andrzejewski, Krzysztof
    Gonera, Cezary
    Gonera, Joanna
    Kosinski, Piotr
    Maslanka, Pawel
    NUCLEAR PHYSICS B, 2022, 975
  • [2] ON THE COMBINATORICS OF COADJOINT ORBITS
    KIRILLOV, AA
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1993, 27 (01) : 62 - 64
  • [3] Cohomological splitting of coadjoint orbits
    Viña, A
    ARCHIV DER MATHEMATIK, 2004, 82 (01) : 13 - 15
  • [4] Coadjoint orbits, spin and dequantization
    Mauro, D
    PHYSICS LETTERS B, 2004, 597 (01) : 94 - 104
  • [5] SYMPLECTIC ACTIONS ON COADJOINT ORBITS
    ARATYN, H
    NISSIMOV, E
    PACHEVA, S
    ZIMERMAN, AH
    PHYSICS LETTERS B, 1990, 240 (1-2) : 127 - 132
  • [6] Star products on coadjoint orbits
    M. A. Lledó
    Physics of Atomic Nuclei, 2001, 64 : 2136 - 2138
  • [8] Coadjoint Orbits of the Poincare Group for Discrete-Spin Particles in Any Dimension
    Lahlali, Ismael Ahlouche
    Boulanger, Nicolas
    Campoleoni, Andrea
    SYMMETRY-BASEL, 2021, 13 (09):
  • [9] Canonical domains for coadjoint orbits
    Torres, David Martinez
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, 108 (06): : 2115 - 2145
  • [10] Strict quantization of coadjoint orbits
    Landsman, NP
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (12) : 6372 - 6383