An extended modified KdV equation and its Painlevé integrability

被引:0
|
作者
Abdul-Majid Wazwaz
Gui-qiong Xu
机构
[1] Saint Xavier University,Department of Mathematics
[2] Shanghai University,Department of Information Management, College of Management
来源
Nonlinear Dynamics | 2016年 / 86卷
关键词
Fifth-order modified KdV equation; Hirota’s method; Painlevé property;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we present an extended higher-order modified KdV equation. An analysis is carried out to show that this equation admits the Painlevé property. For this new integrable model, the one-soliton, two-soliton and three-soliton solutions are derived by using the simplified Hirota’s direct method. We also demonstrate that one, two and three singular soliton solutions are possible for the defocusing form of this extended higher-order mKdV equation.
引用
收藏
页码:1455 / 1460
页数:5
相关论文
共 50 条
  • [41] Localized waves solutions for the fifth-order coupled extended modified KdV equation
    Song, N.
    Liu, R.
    Guo, M. M.
    Ma, W. X.
    WAVE MOTION, 2024, 124
  • [42] Soliton molecules, rational positons and rogue waves for the extended complex modified KdV equation
    Huang, Lin
    Lv, Nannan
    NONLINEAR DYNAMICS, 2021, 105 (04) : 3475 - 3487
  • [43] Soliton molecules, rational positons and rogue waves for the extended complex modified KdV equation
    Lin Huang
    Nannan Lv
    Nonlinear Dynamics, 2021, 105 : 3475 - 3487
  • [44] Infinitely extended complex KdV equation and its solutions : solitons and rogue waves
    Ankiewicz, A.
    Bokaeeyan, M.
    Akhmediev, N.
    PHYSICA SCRIPTA, 2020, 95 (03)
  • [45] A search for higher-dimensional integrable modified KdV equations - The Painlevé approach
    Toda K.
    Journal of Nonlinear Mathematical Physics, 2002, 9 (Suppl 1) : 207 - 212
  • [46] Classification of Dark Modified KdV Equation
    熊娜
    楼森岳
    李彪
    陈勇
    CommunicationsinTheoreticalPhysics, 2017, 68 (07) : 13 - 20
  • [47] A supersymmetric second modified KdV equation
    Zhang, Meng-Xia
    Liu, Q. P.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2007, 14 (02) : 230 - 237
  • [48] Discretization of the potential modified KdV equation
    Hirota, R
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (07) : 2234 - 2236
  • [49] The modified KdV equation on a finite interval
    de Monvel, AB
    Shepelsky, D
    COMPTES RENDUS MATHEMATIQUE, 2003, 337 (08) : 517 - 522
  • [50] A supersymmetric second modified KdV equation
    Meng-Xia Zhang
    Q P Liu
    Journal of Nonlinear Mathematical Physics, 2007, 14 (2) : 230 - 237