An extended modified KdV equation and its Painlevé integrability

被引:0
|
作者
Abdul-Majid Wazwaz
Gui-qiong Xu
机构
[1] Saint Xavier University,Department of Mathematics
[2] Shanghai University,Department of Information Management, College of Management
来源
Nonlinear Dynamics | 2016年 / 86卷
关键词
Fifth-order modified KdV equation; Hirota’s method; Painlevé property;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we present an extended higher-order modified KdV equation. An analysis is carried out to show that this equation admits the Painlevé property. For this new integrable model, the one-soliton, two-soliton and three-soliton solutions are derived by using the simplified Hirota’s direct method. We also demonstrate that one, two and three singular soliton solutions are possible for the defocusing form of this extended higher-order mKdV equation.
引用
收藏
页码:1455 / 1460
页数:5
相关论文
共 50 条
  • [31] Solutions of a modified third Painlevé equation are meromorphic
    Aimo Hinkkanen
    Ilpo Laine
    Journal d’Analyse Mathématique, 2001, 85 : 323 - 337
  • [32] On integrability of a (2+1)-dimensional perturbed KdV equation
    Sakovich, SY
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 1998, 5 (03) : 230 - 233
  • [33] Integrability properties of a generalized reduction of the KdV6 equation
    Gordoa, P. R.
    Pickering, A.
    Prada, J.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (06) : 2968 - 2972
  • [34] On Integrability of a (2+1)-Dimensional Perturbed KdV Equation
    S. Yu. Sakovich
    Journal of Nonlinear Mathematical Physics, 1998, 5 : 230 - 233
  • [35] Multiscale Expansion and Integrability Properties of the Lattice Potential KdV Equation
    Rafael Hernandez Heredero
    Decio Levi
    Matteo Petrera
    Christian Scimiterna
    Journal of Nonlinear Mathematical Physics, 2008, 15 : 323 - 333
  • [36] Multiscale Expansion and Integrability Properties of the Lattice Potential KdV Equation
    Hernandez Heredero, Rafael
    Levi, Decio
    Petrera, Matteo
    Scimiterna, Christian
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (Suppl 3) : 323 - 333
  • [37] Analytical integrability and physical solutions of d-KdV equation
    Karmakar, PK
    Dwivedi, CB
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (03)
  • [38] Extended new Painlevé integrable KdV-CBS equation: multiple shocks, lump, breathers, and other physical wave solutions
    Alhejaili, Weaam
    Wazwaz, Abdul-Majid
    El-Tantawy, Samir A.
    PHYSICA SCRIPTA, 2025, 100 (01)
  • [39] Two new Painlevé integrable KdV–Calogero–Bogoyavlenskii–Schiff (KdV-CBS) equation and new negative-order KdV-CBS equation
    Abdul-Majid Wazwaz
    Nonlinear Dynamics, 2021, 104 : 4311 - 4315
  • [40] Painlevé integrability and analytical solutions of variable coefficients negative order KdV–Calogero–Bogoyavlenskii–Schiff equation using auto-Bäcklund transformation
    Shailendra Singh
    S. Saha Ray
    Optical and Quantum Electronics, 2023, 55