Hilbert Space;
Convergence Result;
Resource Consumption;
Nonempty Subset;
Real World Application;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let H be a Hilbert space and let C be a closed, convex and nonempty subset of H. If T:C→H\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$T:C\to H$\end{document} is a non-self and non-expansive mapping, we can define a map h:C→R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$h:C\to\mathbb{R}$\end{document} by h(x):=inf{λ≥0:λx+(1−λ)Tx∈C}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$h(x):=\inf\{\lambda\geq 0:\lambda x+(1-\lambda)Tx\in C\}$\end{document}. Then, for a fixed x0∈C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$x_{0}\in C$\end{document} and for α0:=max{1/2,h(x0)}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\alpha_{0}:=\max\{1/2, h(x_{0})\}$\end{document}, we define the Krasnoselskii-Mann algorithm xn+1=αnxn+(1−αn)Txn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$x_{n+1}=\alpha _{n}x_{n}+(1-\alpha_{n})Tx_{n}$\end{document}, where αn+1=max{αn,h(xn+1)}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\alpha_{n+1}=\max\{\alpha_{n},h(x_{n+1})\}$\end{document}. We will prove both weak and strong convergence results when C is a strictly convex set and T is an inward mapping.
机构:
Tianjin Polytech Univ, Dept Math, Tianjin 300160, Peoples R ChinaGyeongsang Natl Univ, Dept Math Educ, Chinju 660701, South Korea
Yao, Yonghong
Cho, Yeal Je
论文数: 0引用数: 0
h-index: 0
机构:
Gyeongsang Natl Univ, Dept Math Educ, Chinju 660701, South Korea
Gyeongsang Natl Univ, RINS, Chinju 660701, South KoreaGyeongsang Natl Univ, Dept Math Educ, Chinju 660701, South Korea
机构:
Univ Tunis El Manar, Lab Anal Math & Applicat LR11ES11, Dept Math, Fac Sci Tunis, Tunis 2092, TunisiaKing Faisal Univ, Coll Sci, Dept Math & Stat, POB 400, Al Hasa 31982, Saudi Arabia