The Krasnoselskii-Mann Method for Approximation of Coincidence Points of Set-Valued Mappings

被引:0
|
作者
Zaslavski, Alexander J. [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Hefa, Israel
关键词
coincidence point; iteration; metric space; nonlinear mapping; NONEXPANSIVE-MAPPINGS; STRONG-CONVERGENCE; THEOREMS;
D O I
10.3390/math13040662
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we use the Krasnoselskii-Mann method in order to obtain approximate coincidence points of set-valued mappings in metric spaces with a hyperbolic structure.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Krasnoselskii-Mann Viscosity Approximation Method for Nonexpansive Mappings
    Altwaijry, Najla
    Aldhaban, Tahani
    Chebbi, Souhail
    Xu, Hong-Kun
    MATHEMATICS, 2020, 8 (07)
  • [2] Existence and approximation of coincidence points of set-valued mappings
    Zaslavski, Alexander J.
    OPTIMIZATION, 2025,
  • [3] The Krasnoselskii-Mann Method for Common Coincidence Problems
    Zaslavski, Alexander J.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2025, 204 (02)
  • [4] Coincidence Points and Generalized Coincidence Points of Two Set-Valued Mappings
    Arutyunov, A. V.
    Zhukovskiy, E. S.
    Zhukovskiy, S. E.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2020, 308 (01) : 35 - 41
  • [5] Coincidence Points and Generalized Coincidence Points of Two Set-Valued Mappings
    A. V. Arutyunov
    E. S. Zhukovskiy
    S. E. Zhukovskiy
    Proceedings of the Steklov Institute of Mathematics, 2020, 308 : 35 - 41
  • [6] Krasnoselskii-Mann method for non-self mappings
    Colao, Vittorio
    Marino, Giuseppe
    FIXED POINT THEORY AND APPLICATIONS, 2015,
  • [7] COINCIDENCE POINTS FOR SET-VALUED MAPPINGS WITH DIRECTIONAL REGULARITY
    Zhang, Binbin
    Ouyang, Wei
    FIXED POINT THEORY, 2021, 22 (01): : 391 - 405
  • [8] Krasnoselskii-Mann method for non-self mappings
    Vittorio Colao
    Giuseppe Marino
    Fixed Point Theory and Applications, 2015
  • [9] Coincidence points of set-valued mappings in partially ordered spaces
    Arutyunov, A. V.
    Zhukovskiy, E. S.
    Zhukovskiy, S. E.
    DOKLADY MATHEMATICS, 2013, 88 (03) : 727 - 729
  • [10] Existence and Approximation of Fixed Points for Set-Valued Mappings
    Simeon Reich
    AlexanderJ Zaslavski
    Fixed Point Theory and Applications, 2010