Krasnoselskii-Mann method for non-self mappings

被引:0
|
作者
Vittorio Colao
Giuseppe Marino
机构
[1] Universitá della Calabria,Department of Mathematics and Computer Science
[2] King Abdulaziz University,Department of Mathematics
关键词
Hilbert Space; Convergence Result; Resource Consumption; Nonempty Subset; Real World Application;
D O I
暂无
中图分类号
学科分类号
摘要
Let H be a Hilbert space and let C be a closed, convex and nonempty subset of H. If T:C→H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T:C\to H$\end{document} is a non-self and non-expansive mapping, we can define a map h:C→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h:C\to\mathbb{R}$\end{document} by h(x):=inf{λ≥0:λx+(1−λ)Tx∈C}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h(x):=\inf\{\lambda\geq 0:\lambda x+(1-\lambda)Tx\in C\}$\end{document}. Then, for a fixed x0∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x_{0}\in C$\end{document} and for α0:=max{1/2,h(x0)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha_{0}:=\max\{1/2, h(x_{0})\}$\end{document}, we define the Krasnoselskii-Mann algorithm xn+1=αnxn+(1−αn)Txn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x_{n+1}=\alpha _{n}x_{n}+(1-\alpha_{n})Tx_{n}$\end{document}, where αn+1=max{αn,h(xn+1)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha_{n+1}=\max\{\alpha_{n},h(x_{n+1})\}$\end{document}. We will prove both weak and strong convergence results when C is a strictly convex set and T is an inward mapping.
引用
收藏
相关论文
共 50 条
  • [21] New Convergence Results for Inertial Krasnoselskii-Mann Iterations in Hilbert Spaces with Applications
    Iyiola, Olaniyi S.
    Shehu, Yekini
    RESULTS IN MATHEMATICS, 2021, 76 (02)
  • [22] Mann–Dotson’s algorithm for a countable family of non-self strict pseudo-contractive mappings
    Prashant Patel
    Rahul Shukla
    Rendiconti del Circolo Matematico di Palermo Series 2, 2024, 73 : 225 - 240
  • [23] Best proximity points of non-self mappings
    Abkar, Ali
    Gabeleh, Moosa
    TOP, 2013, 21 (02) : 287 - 295
  • [24] GLOBAL OPTIMAL SOLUTIONS OF NON-SELF MAPPINGS
    Gabeleh, Moosa
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2013, 75 (03): : 67 - 74
  • [25] Best proximity points of non-self mappings
    Ali Abkar
    Moosa Gabeleh
    TOP, 2013, 21 : 287 - 295
  • [26] On two pairs of non-self hybrid mappings
    Ciric, Ljubomir B.
    Ume, Jeong Sheok
    Nikolic, Nebojsa T.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 83 : 17 - 29
  • [27] Mann-Dotson's algorithm for a countable family of non-self strict pseudo-contractive mappings
    Patel, Prashant
    Shukla, Rahul
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (01) : 225 - 240
  • [28] A Fixed Point Theorem for Contractive Non-self Mappings
    Reich, Simeon
    Zaslavski, Alexander J.
    COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS V, 2013, 591 : 205 - 209
  • [29] A PAIR OF NON-SELF MAPPINGS IN CONE METRIC SPACES
    Radenovic, Stojan
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2012, 36 (02): : 189 - 198
  • [30] BEST PROXIMITY POINT THEOREMS FOR NON-SELF MAPPINGS
    Raj, V. Sankar
    FIXED POINT THEORY, 2013, 14 (02): : 447 - 453