Error Bounds of the Finite Difference Time Domain Methods for the Dirac Equation in the Semiclassical Regime

被引:0
|
作者
Ying Ma
Jia Yin
机构
[1] Beijing Computational Science Research Center,NUS Graduate School for Integrative Sciences and Engineering (NGS)
[2] National University of Singapore,undefined
来源
关键词
Dirac equation; Semiclassical regime; Finite difference time domain method; -scalability;
D O I
暂无
中图分类号
学科分类号
摘要
We study rigorously the error bounds of four frequently-used finite difference time domain (FDTD) methods for the Dirac equation in the semiclassical regime, involving a small dimensionless parameter 0<ε≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\varepsilon \le 1$$\end{document} representing the scaled Planck constant. In this regime, there are highly oscillatory propagating waves with wavelength O(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\varepsilon )$$\end{document} in both time and space of the solution. We apply the leap-frog, two semi-implicit, and the Crank–Nicolson finite difference methods to numerically solve the equation, and establish rigorously their error estimates. We prove that these methods share the same error bounds, which are explicitly related to time step size τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}, mesh size h, as well as the small parameter ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}. Furthermore, we find out the dependence of the observables, i.e. the total probability density and the current density on the parameters τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}, h and ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}. Based on the error bounds, in the semiclassical regime, i.e. 0<ε≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\varepsilon \ll 1$$\end{document}, to obtain ‘correct’ numerical solutions and related observables, the ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-scalabilities τ=O(ε3/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau = O(\varepsilon ^{3/2})$$\end{document} and h=O(ε3/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h = O(\varepsilon ^{3/2})$$\end{document} are required for all these FDTD methods. Numerical results are carried out to support our error estimates.
引用
收藏
页码:1801 / 1822
页数:21
相关论文
共 50 条
  • [21] COMPUTATION OF THE SCHRODINGER EQUATION IN THE SEMICLASSICAL REGIME ON AN UNBOUNDED DOMAIN
    Yang, Xu
    Zhang, Jiwei
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (02) : 808 - 831
  • [22] Uniform error bounds of exponential wave integrator methods for the long-time dynamics of the Dirac equation with small potentials
    Feng, Yue
    Xu, Zhiguo
    Yin, Jia
    APPLIED NUMERICAL MATHEMATICS, 2022, 172 : 50 - 66
  • [23] Finite-difference time-domain methods
    不详
    NATURE REVIEWS METHODS PRIMERS, 2023, 3 (01):
  • [24] Numerical stability of finite difference time domain methods
    Thoma, P
    Weiland, T
    IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) : 2740 - 2743
  • [25] Finite-difference time-domain methods
    F. L. Teixeira
    C. Sarris
    Y. Zhang
    D.-Y. Na
    J.-P. Berenger
    Y. Su
    M. Okoniewski
    W. C. Chew
    V. Backman
    J. J. Simpson
    Nature Reviews Methods Primers, 3
  • [26] Finite difference time domain methods for piezoelectric crystals
    Chagla, Farid
    Smith, Peter M.
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2006, 53 (10) : 1895 - 1901
  • [27] Error Estimates of Finite Difference Methods for the Biharmonic Nonlinear Schrodinger Equation
    Ma, Ying
    Zhang, Teng
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 95 (01)
  • [28] Efficient methods for linear Schrodinger equation in the semiclassical regime with time-dependent potential
    Bader, Philipp
    Iserles, Arieh
    Kropielnicka, Karolina
    Singh, Pranav
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2193):
  • [29] UNIFORM OBSERVABLE ERROR BOUNDS OF TROTTER FORMULAE FOR THE SEMICLASSICAL SCHRODINGER EQUATION
    Borns-weil, Yonah
    Fang, Di
    MULTISCALE MODELING & SIMULATION, 2025, 23 (01): : 255 - 277
  • [30] Special issue on Finite Difference Time and Frequency Domain methods
    Weiland, T
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 1999, 12 (1-2) : 1 - 1