Neutrosophic linear programming using possibilistic mean

被引:0
|
作者
Kiran Khatter
机构
[1] BML Munjal University,Department of Computer Science
来源
Soft Computing | 2020年 / 24卷
关键词
Neutrosophic set (NS); Neutrosophic number; Single-valued neutrosophic set (SVNS); Alpha cut; Beta cut; Gamma cut; Possibilistic mean; Possibility mean; Neutrosophic number linear programming (NNLP); Neutrosophic linear programming (NNLP); Neutrosophic optimization;
D O I
暂无
中图分类号
学科分类号
摘要
The paper discusses the concept of fuzzy set theory, interval-valued fuzzy set, intuitionistic fuzzy set, interval-valued intuitionistic fuzzy set, neutrosophic set and its operational laws. The paper presents the α,β,γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha ,\beta ,\gamma $$\end{document}-cut of single-valued triangular neutrosophic numbers and introduces the arithmetic operations of triangular neutrosophic numbers using α,β,γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha ,\beta ,\gamma $$\end{document}-cut. Then, possibilistic mean of truth membership function, indeterminacy membership function and falsity membership function is defined. The proposed approach converts each triangular neutrosophic number in linear programming problem to weighted value using possibilistic mean to determine the crisp linear programming problem. The proposed approach also considers the risk attitude of expert while deciding the parameters of linear programming model.
引用
收藏
页码:16847 / 16867
页数:20
相关论文
共 50 条
  • [41] A NEW APPROACH TO SOME POSSIBILISTIC LINEAR-PROGRAMMING PROBLEMS
    LAI, YJ
    HWANG, CL
    FUZZY SETS AND SYSTEMS, 1992, 49 (02) : 121 - 133
  • [42] Bi-level Linear Programming Problem with Neutrosophic Numbers
    Pramanik, Surapati
    Dey, Partha Pratim
    NEUTROSOPHIC SETS AND SYSTEMS, 2018, 21 : 110 - 121
  • [43] A novel method for solving the fully neutrosophic linear programming problems
    Abdel-Basset, Mohamed
    Gunasekaran, M.
    Mohamed, Mai
    Smarandache, Florentin
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (05): : 1595 - 1605
  • [44] Neutrosophic linear programming problem and its application to real life
    Tuhin Bera
    Nirmal Kumar Mahapatra
    Afrika Matematika, 2020, 31 : 709 - 726
  • [45] An Application of Pentagonal Neutrosophic Linear Programming for Stock Portfolio Optimization
    Khalifa H.A.E.-W.
    Saeed M.
    Rahman A.U.
    El-Morsy S.
    Neutrosophic Sets and Systems, 2022, 51 : 653 - 665
  • [46] Neutrosophic linear programming problem and its application to real life
    Bera, Tuhin
    Mahapatra, Nirmal Kumar
    AFRIKA MATEMATIKA, 2020, 31 (3-4) : 709 - 726
  • [47] A New Method for Solving Interval Neutrosophic Linear Programming Problems
    Nafei, Amirhossein
    Yuan, Wenjun
    Nasseri, Hadi
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2020, 33 (04): : 796 - 808
  • [48] Formulation of general possibilistic linear programming problems for complex industrial systems
    Tang, JF
    Wang, DW
    Fung, RYK
    FUZZY SETS AND SYSTEMS, 2001, 119 (01) : 41 - 48
  • [49] Multi-level linear programming problem with neutrosophic numbers: A goal programming strategy
    Pramanik, Surapati
    Dey, Partha Pratim
    NEUTROSOPHIC SETS AND SYSTEMS, 2019, 29 : 242 - 254
  • [50] Possibilistic Stackelberg solutions to bilevel linear programming problems with fuzzy parameters
    Katagiri, Hideki
    Kato, Kosuke
    Uno, Takeshi
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 32 (06) : 4485 - 4501