Neutrosophic linear programming using possibilistic mean

被引:0
|
作者
Kiran Khatter
机构
[1] BML Munjal University,Department of Computer Science
来源
Soft Computing | 2020年 / 24卷
关键词
Neutrosophic set (NS); Neutrosophic number; Single-valued neutrosophic set (SVNS); Alpha cut; Beta cut; Gamma cut; Possibilistic mean; Possibility mean; Neutrosophic number linear programming (NNLP); Neutrosophic linear programming (NNLP); Neutrosophic optimization;
D O I
暂无
中图分类号
学科分类号
摘要
The paper discusses the concept of fuzzy set theory, interval-valued fuzzy set, intuitionistic fuzzy set, interval-valued intuitionistic fuzzy set, neutrosophic set and its operational laws. The paper presents the α,β,γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha ,\beta ,\gamma $$\end{document}-cut of single-valued triangular neutrosophic numbers and introduces the arithmetic operations of triangular neutrosophic numbers using α,β,γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha ,\beta ,\gamma $$\end{document}-cut. Then, possibilistic mean of truth membership function, indeterminacy membership function and falsity membership function is defined. The proposed approach converts each triangular neutrosophic number in linear programming problem to weighted value using possibilistic mean to determine the crisp linear programming problem. The proposed approach also considers the risk attitude of expert while deciding the parameters of linear programming model.
引用
收藏
页码:16847 / 16867
页数:20
相关论文
共 50 条
  • [31] POSSIBILISTIC LINEAR-PROGRAMMING WITH TRIANGULAR FUZZY NUMBERS
    BUCKLEY, JJ
    FUZZY SETS AND SYSTEMS, 1988, 26 (01) : 135 - 138
  • [32] Possibilistic linear programming in blending and transportation planning problem
    Bilgen, Bilge
    Applications of Fuzzy Sets Theory, 2007, 4578 : 20 - 27
  • [33] Solving Neutrosophic Linear Programming Problems Using Exterior Point Simplex Algorithm
    Badr, Elsayed
    Nada, Shokry
    Ali, Saeed
    Elrokh, Ashraf
    Neutrosophic Sets and Systems, 2021, 45 : 320 - 339
  • [34] Possibilistic linear programming with fuzzy if-then rule coefficients
    Inuiguchi M.
    Tanino T.
    Fuzzy Optimization and Decision Making, 2002, 1 (1) : 65 - 91
  • [35] A parametric approach to solve neutrosophic linear programming models
    Abdelfattah, Walid
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2021, 42 (03): : 631 - 654
  • [36] Exploring Neutrosophic Linear Programming in Advanced Fuzzy Contexts
    Tripathi S.K.
    Dey A.
    Broumi S.
    Kumar R.
    Neutrosophic Sets and Systems, 2024, 66 : 170 - 184
  • [37] Neutrosophic number linear programming method and its application under neutrosophic number environments
    Jun Ye
    Soft Computing, 2018, 22 : 4639 - 4646
  • [38] Neutrosophic number linear programming method and its application under neutrosophic number environments
    Ye, Jun
    SOFT COMPUTING, 2018, 22 (14) : 4639 - 4646
  • [39] Supply Chain for Perishable Agriculture Products by Possibilistic Linear Programming
    Jarernsuk, Saran
    Phruksaphanrat, Busaba
    2019 IEEE 6TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND APPLICATIONS (ICIEA), 2019, : 743 - 747
  • [40] Possibilistic linear programming problems involving normal random variables
    Barik S.K.
    Biswal M.P.
    International Journal of Fuzzy System Applications, 2016, 5 (03) : 1 - 13