Neutrosophic linear programming using possibilistic mean

被引:0
|
作者
Kiran Khatter
机构
[1] BML Munjal University,Department of Computer Science
来源
Soft Computing | 2020年 / 24卷
关键词
Neutrosophic set (NS); Neutrosophic number; Single-valued neutrosophic set (SVNS); Alpha cut; Beta cut; Gamma cut; Possibilistic mean; Possibility mean; Neutrosophic number linear programming (NNLP); Neutrosophic linear programming (NNLP); Neutrosophic optimization;
D O I
暂无
中图分类号
学科分类号
摘要
The paper discusses the concept of fuzzy set theory, interval-valued fuzzy set, intuitionistic fuzzy set, interval-valued intuitionistic fuzzy set, neutrosophic set and its operational laws. The paper presents the α,β,γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha ,\beta ,\gamma $$\end{document}-cut of single-valued triangular neutrosophic numbers and introduces the arithmetic operations of triangular neutrosophic numbers using α,β,γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha ,\beta ,\gamma $$\end{document}-cut. Then, possibilistic mean of truth membership function, indeterminacy membership function and falsity membership function is defined. The proposed approach converts each triangular neutrosophic number in linear programming problem to weighted value using possibilistic mean to determine the crisp linear programming problem. The proposed approach also considers the risk attitude of expert while deciding the parameters of linear programming model.
引用
收藏
页码:16847 / 16867
页数:20
相关论文
共 50 条
  • [1] Neutrosophic linear programming using possibilistic mean
    Khatter, Kiran
    SOFT COMPUTING, 2020, 24 (22) : 16847 - 16867
  • [2] Mehar approach to solve neutrosophic linear programming problems using possibilistic mean
    Bhatia, Tanveen Kaur
    Kumar, Amit
    Sharma, M. K.
    Appadoo, S. S.
    SOFT COMPUTING, 2022, 26 (17) : 8479 - 8495
  • [3] Mehar approach to solve neutrosophic linear programming problems using possibilistic mean
    Tanveen Kaur Bhatia
    Amit Kumar
    M. K. Sharma
    S. S. Appadoo
    Soft Computing, 2022, 26 : 8479 - 8495
  • [4] Recoverable Possibilistic Linear Programming
    Kasperski, Adam
    Zielinski, Pawel
    2024 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, FUZZ-IEEE 2024, 2024,
  • [5] ON POSSIBILISTIC LINEAR-PROGRAMMING
    LUHANDJULA, MK
    FUZZY SETS AND SYSTEMS, 1986, 18 (01) : 15 - 30
  • [6] Possibilistic Mean Models for Linear Programming Problems with Discrete Fuzzy Random Variables
    Katagiri, Hideki
    Uno, Takeshi
    Kato, Kosuke
    2013 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC 2013), 2013, : 2097 - 2102
  • [7] Neutrosophic data envelopment analysis based on the possibilistic mean approach
    Mohanta, Kshitish Kumar
    Sharanappa, Deena Sunil
    Mishra, Vishnu Narayan
    OPERATIONS RESEARCH AND DECISIONS, 2023, 33 (02) : 81 - 98
  • [8] MULTIOBJECTIVE POSSIBILISTIC LINEAR-PROGRAMMING
    BUCKLEY, JJ
    FUZZY SETS AND SYSTEMS, 1990, 35 (01) : 23 - 28
  • [9] Possibilistic regularization of linear programming problems
    Rybkin, VA
    Yazenin, AV
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2003, 42 (03) : 391 - 400
  • [10] AN EXTENSION TO POSSIBILISTIC LINEAR-PROGRAMMING
    JULIEN, B
    FUZZY SETS AND SYSTEMS, 1994, 64 (02) : 195 - 206