Bayesian joint quantile autoregression

被引:0
|
作者
Jorge Castillo-Mateo
Alan E. Gelfand
Jesús Asín
Ana C. Cebrián
Jesús Abaurrea
机构
[1] University of Zaragoza,Department of Statistical Methods
[2] Duke University,Department of Statistical Science
来源
TEST | 2024年 / 33卷
关键词
Copula model; Gaussian process; Joint quantile model; Markov chain Monte Carlo; Spatial quantile autoregression; 62F15; 62G08; 62H05; 62M10; 62M30;
D O I
暂无
中图分类号
学科分类号
摘要
Quantile regression continues to increase in usage, providing a useful alternative to customary mean regression. Primary implementation takes the form of so-called multiple quantile regression, creating a separate regression for each quantile of interest. However, recently, advances have been made in joint quantile regression, supplying a quantile function which avoids crossing of the regression across quantiles. Here, we turn to quantile autoregression (QAR), offering a fully Bayesian version. We extend the initial quantile regression work of Koenker and Xiao (J Am Stat Assoc 101(475):980–990, 2006. https://doi.org/10.1198/016214506000000672) in the spirit of Tokdar and Kadane (Bayesian Anal 7(1):51–72, 2012. https://doi.org/10.1214/12-BA702). We offer a directly interpretable parametric model specification for QAR. Further, we offer a pth-order QAR(p) version, a multivariate QAR(1) version, and a spatial QAR(1) version. We illustrate with simulation as well as a temperature dataset collected in Aragón, Spain.
引用
收藏
页码:335 / 357
页数:22
相关论文
共 50 条
  • [41] Markov-switching quantile autoregression: a Gibbs sampling approach
    Liu, Xiaochun
    Luger, Richard
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2018, 22 (02):
  • [42] Debt ceiling and fiscal sustainability in Brazil: A quantile autoregression approach
    Lima, Luiz Renato
    Gaglianone, Wagner Piazza
    Sampaio, Raquel M. B.
    JOURNAL OF DEVELOPMENT ECONOMICS, 2008, 86 (02) : 313 - 335
  • [43] Maximum likelihood estimation for quantile autoregression models with Markovian switching
    Tao, Ye
    Yin, Juliang
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (22) : 7915 - 7943
  • [44] Unit root quantile autoregression testing with smooth structural changes
    Li, Haiqi
    Zheng, Chaowen
    FINANCE RESEARCH LETTERS, 2018, 25 : 83 - 89
  • [45] Adjusted Extreme Conditional Quantile Autoregression with Application to Risk Measurement
    Kithinji, Martin M.
    Mwita, Peter N.
    Kube, Ananda O.
    JOURNAL OF PROBABILITY AND STATISTICS, 2021, 2021
  • [46] Variational Bayesian inference for network autoregression models
    Lai, Wei-Ting
    Chen, Ray-Bing
    Chen, Ying
    Koch, Thorsten
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 169
  • [47] Bayesian Nonparametric Density Autoregression with Lag Selection*
    Heiner, Matthew
    Kottas, Athanasios
    BAYESIAN ANALYSIS, 2022, 17 (04): : 1245 - 1273
  • [48] Overreaction in the REITs Market: New Evidence from Quantile Autoregression Approach
    Ngene, Geoffrey M.
    Manohar, Catherine Anitha
    Julio, Ivan F.
    JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2020, 13 (11)
  • [49] Quantile autoregression neural network model with applications to evaluating value at risk
    Xu, Qifa
    Liu, Xi
    Jiang, Cuixia
    Yu, Keming
    APPLIED SOFT COMPUTING, 2016, 49 : 1 - 12
  • [50] A Simple Class of Bayesian Nonparametric Autoregression Models
    Di Lucca, Maria Anna
    Guglielmi, Alessandra
    Mueller, Peter
    Quintana, Fernando A.
    BAYESIAN ANALYSIS, 2013, 8 (01): : 63 - 87