Markov-switching quantile autoregression: a Gibbs sampling approach

被引:6
|
作者
Liu, Xiaochun [1 ]
Luger, Richard [2 ]
机构
[1] Univ Alabama, Dept Econ Finance & Legal Studies, Tuscaloosa, AL 35487 USA
[2] Laval Univ, Dept Finance Insurance & Real Estate, Quebec City, PQ G1V 0A6, Canada
来源
关键词
asymmetric Laplace distribution; Gibbs sampler; non-crossing quantiles; quantile regression; regime changes; TIME-SERIES; REGRESSION; INFERENCE; RISK; MODELS; PRICES; TESTS;
D O I
10.1515/snde-2016-0078
中图分类号
F [经济];
学科分类号
02 ;
摘要
We extend the class of linear quantile autoregression models by allowing for the possibility of Markov-switching regimes in the conditional distribution of the response variable. We also develop a Gibbs sampling approach for posterior inference by using data augmentation and a location-scale mixture representation of the asymmetric Laplace distribution. Bayesian calculations are easily implemented, because all complete conditional densities used in the Gibbs sampler have closed-form expressions. The proposed Gibbs sampler provides the basis for a stepwise re-estimation procedure that ensures non-crossing quantiles. Monte Carlo experiments and an empirical application to the U.S. real interest rate show that both inference and forecasting are improved when the quantile monotonicity restriction is taken into account.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Markov switching quantile autoregression
    Liu, Xiaochun
    [J]. STATISTICA NEERLANDICA, 2016, 70 (04) : 356 - 395
  • [2] MCMC for Markov-switching models-Gibbs sampling vs. marginalized likelihood
    Osmundsen, Kjartan Kloster
    Kleppe, Tore Selland
    Oglend, Atle
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (03) : 669 - 690
  • [3] Markov-Switching Bayesian Vector Autoregression Model in Mortality Forecasting
    Fu, Wanying
    Smith, Barry R.
    Brewer, Patrick
    Droms, Sean
    [J]. RISKS, 2023, 11 (09)
  • [4] Dealing with Markov-switching parameters in quantile regression models
    Kim, Yunmi
    Huo, Lijuan
    Kim, Tae-Hwan
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (11) : 6773 - 6791
  • [5] The economic performance of cities: A Markov-switching approach
    Owyang, Michael T.
    Piger, Jeremy M.
    Wall, Howard J.
    Wheeler, Christopher H.
    [J]. JOURNAL OF URBAN ECONOMICS, 2008, 64 (03) : 538 - 550
  • [6] Incorporating a leading indicator into the trading rule through the Markov-switching vector autoregression model
    Chang, Tzu-Pu
    Hu, Jin-Li
    [J]. APPLIED ECONOMICS LETTERS, 2009, 16 (12) : 1255 - 1259
  • [7] Regime-dependent impulse response functions in a Markov-switching vector autoregression model
    Ehrmann, M
    Ellison, M
    Valla, N
    [J]. ECONOMICS LETTERS, 2003, 78 (03) : 295 - 299
  • [8] Efficient Gibbs sampling for Markov switching GARCH models
    Billio, Monica
    Casarin, Roberto
    Osuntuyi, Anthony
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 100 : 37 - 57
  • [9] A Markov-switching approach to the study of citations in academic journals
    Delbianco, Fernando
    Fioriti, Andres
    Hernandez-Chanto, Allan
    Tohme, Fernando
    [J]. JOURNAL OF INFORMETRICS, 2020, 14 (04)
  • [10] Fuel taxes and consumer behaviour: a Markov-switching approach
    Porcher, Simon
    Porcher, Thomas
    [J]. INTERNATIONAL JOURNAL OF GLOBAL ENERGY ISSUES, 2018, 41 (1-4) : 14 - 24