Dealing with Markov-switching parameters in quantile regression models

被引:3
|
作者
Kim, Yunmi [1 ]
Huo, Lijuan [2 ]
Kim, Tae-Hwan [3 ]
机构
[1] Univ Seoul, Dept Econ, Seoul, South Korea
[2] Beijing Inst Technol, Sch Humanities & Social Sci, Beijing, Peoples R China
[3] Yonsei Univ, Sch Econ, 134 Shinchon Dong, Seoul 120749, South Korea
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
EM algorithm; Markov-switching; Quantile regression; Quasi-maximum likelihood estimation; Structural breaks; MAXIMUM-LIKELIHOOD; STRUCTURAL-CHANGE; TIME-SERIES; TESTS;
D O I
10.1080/03610918.2020.1813774
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile regression has become a standard modern econometric method because of its capability to investigate the relationship between economic variables at various quantiles. The econometric method of Markov-switching regression is also considered important because it can deal with structural models or time-varying parameter models flexibly. A combination of these two methods, known as "Markov-switching quantile regression (MSQR)," has recently been proposed. Liu and, Liu and Luger propose MSQR models using the Bayesian approach whereas Ye et al.'s proposal for MSQR models is based on the classical approach. In our study, we extend the results of Ye et al. First, we propose an efficient estimation method based on the expectation-maximization algorithm. In our second extension, we adopt the quasi-maximum likelihood approach to estimate the proposed MSQR models unlike the maximum likelihood approach that Ye et al. use. Our simulation results confirm that the proposed expectation-maximization (EM) estimation method for MSQR models works quite well.
引用
收藏
页码:6773 / 6791
页数:19
相关论文
共 50 条
  • [1] Markov-Switching MIDAS Models
    Guerin, Pierre
    Marcellino, Massimiliano
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2013, 31 (01) : 45 - 56
  • [2] Markov-switching ARCH models
    Francq, C
    Roussignol, M
    Zakoïan, JM
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (10): : 921 - 924
  • [3] Markov-switching quantile autoregression: a Gibbs sampling approach
    Liu, Xiaochun
    Luger, Richard
    [J]. STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2018, 22 (02):
  • [4] Markov-switching generalized additive models
    Langrock, Roland
    Kneib, Thomas
    Glennie, Richard
    Michelot, Theo
    [J]. STATISTICS AND COMPUTING, 2017, 27 (01) : 259 - 270
  • [5] Stationarity of Markov-switching ARMA models
    Francq, C
    Zakoïan, JM
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (11): : 1031 - 1034
  • [6] On Markov-switching periodic ARMA models
    Aliat, Billel
    Hamdi, Faycal
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (02) : 344 - 364
  • [7] Markov-switching generalized additive models
    Roland Langrock
    Thomas Kneib
    Richard Glennie
    Théo Michelot
    [J]. Statistics and Computing, 2017, 27 : 259 - 270
  • [8] Stationarity of multivariate Markov-switching ARMA models
    Francq, C
    Zakoïan, JM
    [J]. JOURNAL OF ECONOMETRICS, 2001, 102 (02) : 339 - 364
  • [9] Understanding Markov-switching rational expectations models
    Farmer, Roger E. A.
    Waggoner, Daniel F.
    Zha, Tao
    [J]. JOURNAL OF ECONOMIC THEORY, 2009, 144 (05) : 1849 - 1867
  • [10] On the combination of data smoothing and Markov-switching models
    Michels, Rouven
    Koslik, Jan-Ole
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2024, 73 (03) : 557 - 560