Markov-switching generalized additive models

被引:21
|
作者
Langrock, Roland [1 ]
Kneib, Thomas [2 ]
Glennie, Richard [3 ]
Michelot, Theo [4 ]
机构
[1] Univ Bielefeld, Bielefeld, Germany
[2] Univ Gottingen, Gottingen, Germany
[3] Univ St Andrews, St Andrews, Fife, Scotland
[4] INSA Rouen, St Etienne, France
关键词
P-splines; Hidden Markov model; Penalized likelihood; Time series regression; SPLINES; NUMBER;
D O I
10.1007/s11222-015-9620-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider Markov-switching regression models, i.e. models for time series regression analyses where the functional relationship between covariates and response is subject to regime switching controlled by an unobservable Markov chain. Building on the powerful hidden Markov model machinery and the methods for penalized B-splines routinely used in regression analyses, we develop a framework for nonparametrically estimating the functional form of the effect of the covariates in such a regression model, assuming an additive structure of the predictor. The resulting class of Markov-switching generalized additive models is immensely flexible, and contains as special cases the common parametric Markov-switching regression models and also generalized additive and generalized linear models. The feasibility of the suggested maximum penalized likelihood approach is demonstrated by simulation. We further illustrate the approach using two real data applications, modelling (i) how sales data depend on advertising spending and (ii) how energy price in Spain depends on the Euro/Dollar exchange rate.
引用
收藏
页码:259 / 270
页数:12
相关论文
共 50 条
  • [1] Markov-switching generalized additive models
    Roland Langrock
    Thomas Kneib
    Richard Glennie
    Théo Michelot
    [J]. Statistics and Computing, 2017, 27 : 259 - 270
  • [2] Gradient boosting in Markov-switching generalized additive models for location, scale, and shape
    Adam, Timo
    Mayr, Andreas
    Kneib, Thomas
    [J]. ECONOMETRICS AND STATISTICS, 2022, 22 : 3 - 16
  • [3] A Markov-switching generalized additive model for compound Poisson processes, with applications to operational loss models
    Hambuckers, J.
    Kneib, T.
    Langrock, R.
    Silbersdorff, A.
    [J]. QUANTITATIVE FINANCE, 2018, 18 (10) : 1679 - 1698
  • [4] Markov-switching poisson generalized autoregressive conditional heteroscedastic models
    Liu, Jichun
    Pan, Yue
    Pan, Jiazhu
    Almarashi, Abdullah
    [J]. STATISTICS AND ITS INTERFACE, 2023, 16 (01) : 531 - 544
  • [5] Markov-Switching MIDAS Models
    Guerin, Pierre
    Marcellino, Massimiliano
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2013, 31 (01) : 45 - 56
  • [6] Markov-switching ARCH models
    Francq, C
    Roussignol, M
    Zakoïan, JM
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (10): : 921 - 924
  • [7] Markov-Switching Spatio-Temporal Generalized Additive Model for Landslide Susceptibility
    Sridharan, Aadityan
    Gutjahr, Georg
    Gopalan, Sundararaman
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2024, 173
  • [8] On Markov-switching periodic ARMA models
    Aliat, Billel
    Hamdi, Faycal
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (02) : 344 - 364
  • [9] Stationarity of Markov-switching ARMA models
    Francq, C
    Zakoïan, JM
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (11): : 1031 - 1034
  • [10] Stationarity of multivariate Markov-switching ARMA models
    Francq, C
    Zakoïan, JM
    [J]. JOURNAL OF ECONOMETRICS, 2001, 102 (02) : 339 - 364