Completeness Property of One-Dimensional Perturbations of Normal and Spectral Operators Generated by First Order Systems

被引:0
|
作者
Anna V. Agibalova
Anton A. Lunyov
Mark M. Malamud
Leonid L. Oridoroga
机构
[1] Donetsk National University,
[2] Facebook,undefined
[3] Inc.,undefined
[4] Peoples’ Friendship University of Russia (RUDN University),undefined
来源
关键词
Systems of ordinary differential equations; Normal operator; Completeness of root vectors; Resolvent operator; Rank one perturbation; Riesz basis property; Primary 47E05; Secondary 34L10; 47B15;
D O I
暂无
中图分类号
学科分类号
摘要
The paper is concerned with the completeness property of rank one perturbations of the unperturbed operators generated by special boundary value problems (BVP) for the following 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \times 2$$\end{document} system 0.1Ly=-iB-1y′+Q(x)y=λy,B=b100b2,y=y1y2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}&L y = -i B^{-1} y' + Q(x) y = \lambda y , \quad B = \begin{pmatrix} b_1 &{}\quad 0 \\ 0 &{}\quad b_2 \end{pmatrix}, \quad y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \end{aligned}$$\end{document}on a finite interval assuming that the potential matrix Q is summable, and b1b2-1∉R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_1 b_2^{-1} \notin \mathbb {R}$$\end{document} (essentially non-Dirac type case). We assume that the unperturbed operator generated by a BVP belongs to one of the following three subclasses of the class of spectral operators: (a) normal operators; (b) operators similar either to a normal or almost normal; (c) operators that meet Riesz basis property with parentheses; We show that in each of the three cases there exists (non-unique) operator generated by a quasi-periodic BVP and its certain rank-one perturbations (in the resolvent sense) generated by special BVPs which are complete while their adjoint are not. In connection with the case (b) we investigate Riesz basis property of quasi-periodic BVP under certain assumptions on the potential matrix Q. We also find a simple formula for the rank of the resolvent difference for operators corresponding to two BVPs for n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \times n$$\end{document} system in terms of the coefficients of linear boundary forms.
引用
收藏
相关论文
共 50 条
  • [21] Perturbations of one-dimensional Schrodinger operators preserving the absolutely continuous spectrum
    Killip, R
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2002, 2002 (38) : 2029 - 2061
  • [22] The first eigenvalue of one-dimensional elliptic operators with killing
    Dai, Kang
    Sun, Xiaobin
    Wang, Jian
    Xie, Yingchao
    MATHEMATISCHE NACHRICHTEN, 2025, 298 (01) : 282 - 311
  • [23] Inverse spectral theory for one-dimensional Schrodinger operators:: The A function
    Remling, C
    MATHEMATISCHE ZEITSCHRIFT, 2003, 245 (03) : 597 - 617
  • [24] Universal bounds on spectral measures of one-dimensional Schrodinger operators
    Remling, C
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2003, 564 : 105 - 117
  • [25] Bounds for the points of spectral concentration of one-dimensional Schrodinger operators
    Gilbert, DJ
    Harris, BJ
    Riehl, SM
    SPECTRAL METHODS FOR OPERATORS OF MATHEMATICAL PHYSICS, 2004, 154 : 139 - 149
  • [26] Lower bounds on the spectral gap of one-dimensional Schrodinger operators
    Kerner, Joachim
    ARCHIV DER MATHEMATIK, 2022, 119 (06) : 613 - 622
  • [27] Spectral Analysis of One-Dimensional Dirac Operators with Slowly Decreasing Potentials
    Mathieu Martin
    Mathematical Physics, Analysis and Geometry, 2003, 6 : 385 - 398
  • [28] Sparse one-dimensional discrete Dirac operators II: Spectral properties
    Carvalho, S. L.
    de Oliveira, C. R.
    Prado, R. A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (07)
  • [29] Higher Derivatives of Spectral Functions Associated with One-dimensional Schrodinger Operators
    Gilbert, D. J.
    Harris, B. J.
    Riehl, S. M.
    METHODS OF SPECTRAL ANALYSIS IN MATHEMATICAL PHYSICS, 2009, 186 : 217 - +
  • [30] On the spectral gap of one-dimensional Schrödinger operators on large intervals
    Kerner, Joachim
    Taeufer, Matthias
    ARCHIV DER MATHEMATIK, 2024, 123 (06) : 641 - 652