Higher Derivatives of Spectral Functions Associated with One-dimensional Schrodinger Operators

被引:0
|
作者
Gilbert, D. J. [1 ]
Harris, B. J. [2 ]
Riehl, S. M. [3 ]
机构
[1] Dublin Inst Technol, Sch Math Sci, Kevin St, Dublin 8, Ireland
[2] No Illinois Univ, Dept Math Sci, De Kalb, IL 60115 USA
[3] Univ No Iowa, Dept Math, Cedar Falls, IA 50614 USA
关键词
Sturm-Liouville problems; spectral functions; unbounded selfadjoint operators; STURM-LIOUVILLE PROBLEMS; PERTURBED DISCRETE SPECTRA; LOCATION;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the existence and asymptotic behaviour of higher derivatives of the spectral function, rho(lambda), on the positive real axis, in the context of one-dimensional Schrodinger operators on the half-line with integrable potentials. In particular, we identify sufficient conditions on the potential for the existence and continuity of the nth derivative, rho((n))(lambda), and outline a systematic procedure for estimating numerical upper bounds for the turning points of such derivatives. The potential relevance of our results to some topical issues in spectral theory is discussed.
引用
收藏
页码:217 / +
页数:3
相关论文
共 50 条