Weak convergence of spectral shift functions for one-dimensional Schrodinger operators

被引:4
|
作者
Gesztesy, Fritz [1 ]
Nichols, Roger [1 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
关键词
Spectral shift functions; Fredholm determinants; one-dimensional Schrodinger operators MSC (2010) Primary: 34L05; 34L25; 34L40; Secondary: 34B24; 34B27; 47E05; RELATIVE OSCILLATION-THEORY; DENSITY-OF-STATES; INFINITE DETERMINANTS; ISOLATED EIGENVALUES; APPROXIMATION;
D O I
10.1002/mana.201100222
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the manner in which spectral shift functions associated with self-adjoint one-dimensional Schrodinger operators on the finite interval (0, R) converge in the infinite volume limit R ? 8 to the half-line spectral shift function. Relying on a Fredholm determinant approach combined with certain measure theoretic facts, we show that prior vague convergence results in the literature in the special case of Dirichlet boundary conditions extend to the notion of weak convergence and arbitrary separated self-adjoint boundary conditions at x = 0 and x = R.
引用
收藏
页码:1799 / 1838
页数:40
相关论文
共 50 条