We investigate the existence and asymptotic behaviour of higher derivatives of the spectral function, rho(lambda), on the positive real axis, in the context of one-dimensional Schrodinger operators on the half-line with integrable potentials. In particular, we identify sufficient conditions on the potential for the existence and continuity of the nth derivative, rho((n))(lambda), and outline a systematic procedure for estimating numerical upper bounds for the turning points of such derivatives. The potential relevance of our results to some topical issues in spectral theory is discussed.
机构:
Univ Calif Irvine, Irvine, CA 92717 USA
Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R ChinaUniv Calif Irvine, Irvine, CA 92717 USA
Ge, Lingrui
Kachkovskiy, Ilya
论文数: 0引用数: 0
h-index: 0
机构:
Michigan State Univ, Dept Math, Wells Hall,619 Red Cedar Rd, E Lansing, MI 48824 USAUniv Calif Irvine, Irvine, CA 92717 USA
机构:
St Petersburg State Univ, Dept Math Phys, 1 Ulianovskaja, St Petersburg 198904, RussiaSt Petersburg State Univ, Dept Math Phys, 1 Ulianovskaja, St Petersburg 198904, Russia
Fedotov, Alexander
Klopp, Frederic
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 13, Inst Galiee, CNRS, UMR 7539, F-93430 Villetaneuse, FranceSt Petersburg State Univ, Dept Math Phys, 1 Ulianovskaja, St Petersburg 198904, Russia
Klopp, Frederic
MATHEMATICAL PHYSICS OF QUANTUM MECHANICS: SELECTED AND REFEREED LECTURES FROM QMATH9,
2006,
690
: 383
-
+