Reynolds number effects in rib-roughened turbulent channel flow

被引:0
|
作者
Karthikeyan Jagadeesan
Vagesh D. Narasimhamurthy
机构
[1] Indian Institute of Technology Madras,Department of Applied Mechanics
关键词
Rough channel flow; DNS; Roughness function; k-type roughness;
D O I
暂无
中图分类号
学科分类号
摘要
A study involving the direct numerical simulation (DNS) of turbulent rough channel flow at Reynolds number Reτ=180\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Re}_{\tau }=180$$\end{document} is undertaken, to investigate the effects of Reynolds number variation on the various statistical quantities and the near-wall dynamical structures. The definition of Reynolds number predominantly considered in this study, Reτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Re}_{\tau }$$\end{document}, is based on the wall friction velocity uτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{\tau }$$\end{document} and the half-height of the channel h. The channel walls are roughened by square ribs elongated along the span of the channel. The ribs are arranged at a constant pitch width and in a manner such that the crests face the ones on the opposite wall, i.e., the roughness on the channel is symmetric about the channel centerline. The results obtained from the current DNS are compared with those from two DNSs at a higher Reynolds number of 400, one of them with roughness height k+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^+$$\end{document} comparable to that in the current DNS and the other with a higher value of k+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^+$$\end{document}. The mean streamline patterns are contrasting in the presence or absence of the secondary vortex; the effects on the location of a seemingly persistent saddle point are also observed. Variation of the skin friction coefficient over a pitch width has apparently lent support to the observations. A measure of the roughness function is presented. The near-wall structures in terms of the contours of the fluctuating velocity reveal finer scale structures at the higher Reynolds number, when the value of k+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^+$$\end{document} is also high.
引用
收藏
页码:254 / 262
页数:8
相关论文
共 50 条
  • [41] Turbulent heat transfer measurement of a jet impinging on the rib-roughened convex surface
    Chung, YS
    Lee, DH
    Lee, JS
    HEAT TRANSFER 1998, VOL 5: GENERAL PAPERS, 1998, : 421 - 426
  • [42] The three-dimensional flow field and heat transfer in a rib-roughened channel at large rotation numbers
    Mayo, Ignacio
    Arts, Tony
    Gicquel, Laurent Y. M.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 123 : 848 - 866
  • [43] An experimental study of a rib-roughened rotating U-bend flow
    Iacovides, H
    Jackson, DC
    Launder, BE
    Yuan, YM
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 1999, 19 (03) : 151 - 159
  • [44] Jet impingement on a rib-roughened wall inside semi-confined channel
    Tan, Lei
    Zhang, Jing-Zhou
    Xu, Hua-Sheng
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2014, 86 : 210 - 218
  • [45] LARGE-EDDY SIMULATION OF TURBULENT-FLOW AND HEAT-TRANSFER IN PLANE AND RIB-ROUGHENED CHANNELS
    CIOFALO, M
    COLLINS, MW
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1992, 15 (04) : 453 - 489
  • [46] Reynolds number effect of the turbulent micropolar channel flow
    Sofiadis, G.
    Sarris, I.
    PHYSICS OF FLUIDS, 2022, 34 (07)
  • [47] Reynolds-number scaling of turbulent channel flow
    Schultz, M. P.
    Flack, K. A.
    PHYSICS OF FLUIDS, 2013, 25 (02)
  • [48] Experimental study of flow and heat transfer in rib-roughened rectangular channels
    Olsson, CO
    Sunden, B
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 1998, 16 (04) : 349 - 365
  • [49] FRICTION FACTOR FOR FLOW IN RECTANGULAR DUCTS WITH ONE SIDE RIB-ROUGHENED
    YOUN, B
    YUEN, C
    MLLS, AF
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 1994, 116 (03): : 488 - 493
  • [50] BUOYANCY EFFECTS AT HIGH ROTATION NUMBER ON THE FLOW FIELD INSIDE A TRIANGULAR SHAPED RIB ROUGHENED CHANNEL
    Furlani, L.
    Armellini, A.
    Casarsa, L.
    11TH EUROPEAN CONFERENCE ON TURBOMACHINERY: FLUID DYNAMICS AND THERMODYNAMICS, 2015,