Reynolds number effects in rib-roughened turbulent channel flow

被引:0
|
作者
Karthikeyan Jagadeesan
Vagesh D. Narasimhamurthy
机构
[1] Indian Institute of Technology Madras,Department of Applied Mechanics
关键词
Rough channel flow; DNS; Roughness function; k-type roughness;
D O I
暂无
中图分类号
学科分类号
摘要
A study involving the direct numerical simulation (DNS) of turbulent rough channel flow at Reynolds number Reτ=180\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Re}_{\tau }=180$$\end{document} is undertaken, to investigate the effects of Reynolds number variation on the various statistical quantities and the near-wall dynamical structures. The definition of Reynolds number predominantly considered in this study, Reτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Re}_{\tau }$$\end{document}, is based on the wall friction velocity uτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{\tau }$$\end{document} and the half-height of the channel h. The channel walls are roughened by square ribs elongated along the span of the channel. The ribs are arranged at a constant pitch width and in a manner such that the crests face the ones on the opposite wall, i.e., the roughness on the channel is symmetric about the channel centerline. The results obtained from the current DNS are compared with those from two DNSs at a higher Reynolds number of 400, one of them with roughness height k+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^+$$\end{document} comparable to that in the current DNS and the other with a higher value of k+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^+$$\end{document}. The mean streamline patterns are contrasting in the presence or absence of the secondary vortex; the effects on the location of a seemingly persistent saddle point are also observed. Variation of the skin friction coefficient over a pitch width has apparently lent support to the observations. A measure of the roughness function is presented. The near-wall structures in terms of the contours of the fluctuating velocity reveal finer scale structures at the higher Reynolds number, when the value of k+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^+$$\end{document} is also high.
引用
收藏
页码:254 / 262
页数:8
相关论文
共 50 条
  • [31] Turbulent flow in a channel at a low Reynolds number
    A. Günther
    D. V. Papavassiliou
    M. D. Warholic
    T. J. Hanratty
    Experiments in Fluids, 1998, 25 : 503 - 511
  • [32] Turbulent flow in a channel at a low Reynolds number
    Gunther, A
    Papavassiliou, DV
    Warholic, MD
    Hanratty, TJ
    EXPERIMENTS IN FLUIDS, 1998, 25 (5-6) : 503 - 511
  • [33] SPATIALLY RESOLVED HEAT TRANSFER COEFFICIENT IN A RIB-ROUGHENED CHANNEL UNDER CORIOLIS EFFECTS
    Mayo, Ignacio
    Arts, Tony
    Clinckemaillie, Julien
    Lahalle, Aude
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2013, VOL 3A, 2013,
  • [34] Effects of rib arrangements on pressure drop and heat transfer in a rib-roughened channel with a sharp 180 deg turn
    Mochizuki, S
    Murata, A
    Fukunaga, M
    JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 1997, 119 (03): : 610 - 616
  • [35] Flow and heat transfer in a rib-roughened trailing-edge cooling channel with crossover impingement
    Xue F.
    Taslim M.E.
    International Journal of Gas Turbine, Propulsion and Power Systems, 2020, 10 (01): : 1 - 11
  • [36] High-Reynolds-number effects in supersonic turbulent channel flow
    Modesti, D.
    Bernardini, M.
    Pirozzoli, S.
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL SYMPOSIUM ON TURBULENCE HEAT AND MASS TRANSFER (THMT-15), 2015, : 403 - 406
  • [37] High rotation number heat transfer of a 45° rib-roughened rectangular duct with two channel orientations
    Liou, T. M.
    Chang, S. W.
    Hung, J. H.
    Chiou, S. F.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2007, 50 (19-20) : 4063 - 4078
  • [38] Effect of Entrance Geometry on Heat Transfer in a Rib-Roughened Rectangular Channel
    Satta, Francesca
    Tanda, Giovanni
    Venturino, Giulio
    HEAT TRANSFER ENGINEERING, 2022, 43 (07) : 623 - 637
  • [39] Heat transfer characteristics in two-pass rib-roughened channel at high rotation number with different channel angles
    Wang, Hui
    Tian, Shu-Qing
    Deng, Hong-Wu
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2015, 30 (10): : 2391 - 2400
  • [40] Effect of a deflector on deposition of particles with different diameters in a rib-roughened channel
    Andaz, Ali Kooh
    Dal Maso, Miikka
    POWDER TECHNOLOGY, 2023, 428