On a Microscopic Representation of Space-Time III

被引:0
|
作者
Rolf Dahm
机构
[1] beratung für IS,
来源
关键词
Relativity; Unification; Quantum field theory; Dirac theory; Clifford algebra; Geometry; Projective geometry; Line geometry; Line Complex; Complex geometry; Congruences; Primary 83E99; Secondary 14N99;
D O I
暂无
中图分类号
学科分类号
摘要
Using the Dirac (Clifford) algebra γμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma ^{\mu }$$\end{document} as initial stage of our discussion, we summarize previous work with respect to the isomorphic 15 dimensional Lie algebra su*(4) as complex embedding of sl(2,H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {H}$$\end{document}), the relation to the compact group SU(4) as well as subgroups and group chains. The main subject, however, is to relate these technical procedures to the geometrical (and physical) background which we see in projective and especially in line geometry of R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{3}$$\end{document}. This line geometrical description, however, leads to applications and identifications of line Complexe and the discussion of technicalities versus identifications of classical line geometrical concepts, Dirac’s ‘square root of p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^{2}$$\end{document}’, the discussion of dynamics and the association of physical concepts like electromagnetism and relativity. We outline a generalizable framework and concept, and we close with a short summary and outlook.
引用
收藏
相关论文
共 50 条
  • [41] REPRESENTATION OF THE LORENTZ TRANSFORMATIONS IN 6-DIMENSIONAL SPACE-TIME
    Trencevski, Kostadin
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2011, 35 (02): : 327 - 340
  • [42] Continuous causal representation of space-time via sphere orderings
    Low, RJ
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (09) : 6525 - 6528
  • [43] Discrete array representation of continuous space-time source distributions
    Shlivinski, Amir
    Heyman, Ehud
    Turkish Journal of Electrical Engineering and Computer Sciences, 2002, 10 (02) : 257 - 271
  • [44] MOIRE INTERFERENCE AND THE REPRESENTATION OF QUANTUM EFFECTS IN EUCLIDEAN SPACE-TIME
    HERZENBERG, CL
    PHYSICS ESSAYS, 1994, 7 (02) : 210 - 222
  • [45] On the space-time separated representation of integral linear viscoelastic models
    Ammar, Amine
    Zghal, Ali
    Morel, Franck
    Chinesta, Francisco
    COMPTES RENDUS MECANIQUE, 2015, 343 (04): : 247 - 263
  • [46] Infinite Series Representation of the Exact PEP for Space-Time Coding
    Zhang, Z.
    Cheung, S. W.
    Yuk, T. I.
    GLOBECOM 2006 - 2006 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, 2006,
  • [47] A Neural Space-Time Representation for Text-to-Image Personalization
    Alaluf, Yuval
    Richardson, Elad
    Metzer, Gal
    Cohen-Or, Daniel
    ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (06):
  • [48] Space-time computation techniques with continuous representation in time (ST-C)
    Takizawa, Kenji
    Tezduyar, Tayfun E.
    COMPUTATIONAL MECHANICS, 2014, 53 (01) : 91 - 99
  • [49] THE PHOTON SELF-ENERGY PROBLEM AND MICROSCOPIC SPACE-TIME STRUCTURE
    KIMURA, T
    PROGRESS OF THEORETICAL PHYSICS, 1953, 10 (05): : 577 - 578
  • [50] SPACE-TIME
    Rahli, Hocine
    INFINI, 2019, (145): : 12 - 20